期刊文献+

基于粒子群优化和模拟退火的混合调度算法 被引量:17

Effective Hybrid Heuristics Based on Particle Swarm Optimization and Simulated Annealing Algorithm for Job Shop Scheduling
下载PDF
导出
摘要 提出了一种离散粒子群调度算法,采用基于工序的编码方式及相应的位置和速度更新方法,使具有连续本质的粒子群算法直接适用于调度问题。针对粒子群算法容易陷入局部最优的缺陷,将其与模拟退火算法结合,得到了粒子群-模拟退火算法、改进的粒子群算法、粒子群-模拟退火交替算法以及粒子群-模拟退火协同算法等4种混合调度算法。仿真结果表明,混合算法均具有较高的求解质量。 A discrete particle swarm optimization (PSO) algorithm was presented for Job Shop scheduling problem. In the algorithm, an operation--based representation was developed, and a new method was used to update position of particles with operation based :representation. So PSO can be easily applied to all classes of scheduling problems. But pure PSO may produce premature and poor re sults. Based on the complementary strengths of PSO and simulated annealing (SA) algorithm, four hybrid procedures were put forward by combining the PSO and SA, Numerical simulation demonstrates that within the framework of the newly designed hybrid algorithm, the NP-hard classic Job Shop scheduling problem can be efficiently solved with higher quality.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2006年第10期1044-1046,1064,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50275078) 山东省自然科学基金资助项目(2004ZX14)
关键词 JOB Shop调度问题 粒子群优化 模拟退火算法 混合算法 Job Shop scheduling problem particle swarm optimization simulated annealing algorithm hybrid procedure
  • 相关文献

参考文献6

  • 1潘全科,朱剑英.基于进化算法和模拟退火算法的混合调度算法[J].机械工程学报,2005,41(6):224-227. 被引量:21
  • 2Eberhart R C,Kennedy J.A New Optimizer Using Particle Swarm Theory.Proc.6th International Symposium on Micro Machine and Human Science.Nagoya Japan:IEEE Service Center,1995. 被引量:1
  • 3Pan Q K,Tasgetiren M F,Liang Y C.A Discrete Particle Swarm Optimization Algorithm for the No-Wait Flowshop Scheduling Problem with Makespan Criterion.Proceedings of the International Workshop on UK Planning and Scheduling Special Interest Group,UK PLANSIG2005,London,2005. 被引量:1
  • 4Shi G Y.A Genetic Algorithm Applied to a Classic Job-Shop Scheduling Problem.International Journal of Systems Science,1997,28(1):25~32. 被引量:1
  • 5Sakawa M,Mori T.An Efficient Genetic Algorithm for Job-Shop Scheduling with Fuzzy Processing and Fuzzy Duedate.Computers & Industrial Engineering,1999,36:325~341. 被引量:1
  • 6王凌著..智能优化算法及其应用[M].北京:清华大学出版社,2001:230.

二级参考文献7

  • 1Chu C, Proth J M, Wang C. Improving job-shop schedules through critical pairwise exchanges. International Journal of Production Research, 1998, 36(3): 683-694. 被引量:1
  • 2Nowicki E, Smutnicki C. A fast taboo search algorithm for the job shop scheduling. Management Science, 1996, 42(6):797-813. 被引量:1
  • 3Shi G Y. A genetic algorithm applied to a classic job-shop scheduling problem. International Journal of Systems Science, 1997, 28(1): 25-32. 被引量:1
  • 4Laarhoven P V, Aarts E, Lenstra J K. Job shop scheduling by simulated anncaling. Operations Research, 1992, 40:113-125. 被引量:1
  • 5Corce F D, Tadei R, Volta G. A genetic algorithm for the job shop problem. Computers and Operations Research, 1995,22:15-24. 被引量:1
  • 6Amico M D, Trubian M. Applying tabu search to the job shop scheduling problems. Annual Operations Research,1993, 40:231-252. 被引量:1
  • 7王凌,郑大钟.Meta-heuristic算法研究进展[J].控制与决策,2000,15(3):257-262. 被引量:22

共引文献20

同被引文献183

引证文献17

二级引证文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部