期刊文献+

基于模拟退火的粒子群算法求解约束优化问题 被引量:28

Particle swarm algorithm based on simulated annealing to solve constrained optimization
下载PDF
导出
摘要 针对复杂约束优化问题,提出一种基于模拟退火(SA)的粒子群(PSO)算法(SAPSO)。该算法使粒子的飞行无记忆性,结合模拟退火算法重新生成停止进化粒子的位置,增强了全局搜索能力。同时采用双群体搜索机制,一个群体保存具有可行解的粒子,用SAPSO算法使粒子逐步搜索到最优可行解;另一个群体保存具有不可行解的粒子,并且可行解群体以一定的概率接受具有不可行解的粒子,有效地维持了群体的多样性。仿真结果表明:该算法能够快速准确地找到位于约束边界上(或附近)的最优解,具有较好的稳定性。 On the basis of simulated annealing, a Particle Swarm Algorithm (PSA) was put forward for solving complicated constrained optimizations. In this algorithm the inertia weight was set to zero, and by simulated annealing algorithm it reproduces the positions of those particles whose .evolution has been ceased. This algorithm does not require the penalty function. Instead, it use the double population searching mechanism, one population storing the particles having feasible solution, the other storing the particles having no feasible solution. In a given probability, the feasible population accepts particles having no feasible solution to keep the diversity of the population. Simulation results show that, hy this proposed algorithm, the particles reach the global optimum solutions located on or near the boundary of the feasible region quickly and precisely with good stability.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第1期136-140,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金资助项目(60574075) 陕西省自然科学基金资助项目(2000SL03)
关键词 人工智能 粒子群算法 模拟退火 约束优化问题 双群体 多样性 artificial intelligence particle swarm optimization simulated annealing constrained optimization problems double population diversity
  • 相关文献

参考文献9

  • 1Kennedy J,Eberhart R.Particle swarm optimization[C] // Proceedings of IEEE International Conference on Neural Networks,Perth,WA,Australia,1995:1942-1948. 被引量:1
  • 2Van den Bergh F.Particle swarm weight initialization in multi-layer perception artificial neural networks[C] // Development and Practice Artificial Intelligence Techniques,Durban,South Africa,1999:41-45. 被引量:1
  • 3Ray T,Liew K M.A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problems[C]//Proceedings of IEEE International Conference on Evolutionary Computation,South Korea:IEEE Press,Seoul,2001:75-80. 被引量:1
  • 4李炳宇,萧蕴诗,吴启迪.一种基于粒子群算法求解约束优化问题的混合算法[J].控制与决策,2004,19(7):804-807. 被引量:48
  • 5Richardson J T,Palmer M R,Liepins G,et al.Some guidelines for genetic algorithms with penalty functions[C]// Proceeding of the 3rd International Conference,Genetic Algorithms (ICGA-89),Georage Mason University,Morgan Kaufmann Publishers,1989:191-197. 被引量:1
  • 6Coello Coello Carlos A.Theoretical and numerical constraint handling techniques used with evolutionary algorithms:a survey of the state of the art[J].Computer Methods in Applied Mechanics and Engineering,2002,191(11):1245-1287. 被引量:1
  • 7Van Le T.A fuzzy evolutionary approach to constrained optimization problems[C]// Proceedings of the 2nd IEEE Conference on Evolutionary Computation,Perth,1995:274-278. 被引量:1
  • 8Deb K.An efficient constraint handing method for genetic algorithms[J].Computer Methods in Applied Mechanics and Engineering,2000,186,(2/4):311-338. 被引量:1
  • 9Runarsson T P,Yao X.Stochastic ranking for constrained evolutionary optimization[J].IEEE Transactions on Evolutionary Computation,2000 (4):284-294. 被引量:1

二级参考文献9

  • 1秦寿康.最优化理论与方法[M].北京:电子工业出版社,1986.. 被引量:3
  • 2[2]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C]. Perth, 1995. 1942-1948. 被引量:1
  • 3[3]Rainer Storn, Kenneth Price. Different evolution--A simple and efficient heuristic for global optimization over continuous space[J]. J of Global Optimization, 1997,(11): 341-359. 被引量:1
  • 4[5]Wang Tao. Global Optimization for Constrained Nonlinear Programming[M]. Doctoral Dissertation: University of Illinois at Urbana-Champaign, 2001. 被引量:1
  • 5[6]Deb K, Agrawal S. A niched-penalty approach for constraint handling in genetic algorithms[A]. Proc of the ICANNGA-99[C]. Portoroz, 1999. 234-239. 被引量:1
  • 6[7]Keane A J. Experiences with optimizers in structural design[A]. Proc of the Conf on Adaptive Computing in Engineering Design and Control 94[C]. Plymouth, 1994.14-27. 被引量:1
  • 7[8]Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems[J]. Evolutionary Computation,1996,4(1):1-32. 被引量:1
  • 8[9]Michalewicz Z,Eaguvel S, et al. The spirit of evolutionary algorithms[J]. J of Computing and Information Technology,1999,7(1): 1-18. 被引量:1
  • 9[11]Schoenauer M,Michalewicz Z. Boundary operators for constrained optimization problems[A]. Proc of the 7th Int Conf on Genetic Algorithms[C]. CA: Morgan Kaufman Publishers,1997.322-329. 被引量:1

共引文献47

同被引文献309

引证文献28

二级引证文献247

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部