期刊文献+

基于改进混合蛙跳算法的SVM分类算法 被引量:6

SVM Classification Algorithm Based on Improved Shuffled Frog Leaping Algorithm
下载PDF
导出
摘要 支持向量机的训练需要求解一个带约束的二次规划问题,但在数据规模很大情况下,经典训练方法将变得很困难。本文提出一种基于改进的混合蛙跳算法的SVM训练算法。针对混合蛙跳算法搜索速度慢且容易陷入局部极值的缺陷,将模拟退火思想引入到混合蛙跳算法中,提出一种改进的混合蛙跳算法。该算法保持了混合蛙跳算法参数少和容易实现的特点,同时通过模拟退火的降温过程来提高算法的进化速度和精度。实验结果表明,该算法能显著提高收敛速度,并能有效克服局部极值,在SVM训练中具有良好效果。 Since training SVM requires solving a restrained quadratic programming problem which becomes diffi- cult for large datasets, a improved Shuffled Frog Leaping Algorithm(SFLA) is proposed as an alternative to current algo- rithm. In order to overcome the defects of SFLA such as slow searching speed in evolution and local minimum, an im- proved algorithm in which the mechanism of Simulated Annealing(SA) is involved into basic SFLA is put forward in this paper. The proposed algorithm is almost as simple as SFLA and improves the evolution rate and precision through tem- perature decreasing procedures. The test results indicate that the algorithm enhances the convergence velocity outstand- ingly and averting the local extreme values effectively, and it is effective and feasible for SVM training.
出处 《信息化研究》 2011年第5期41-44,共4页 INFORMATIZATION RESEARCH
基金 国家自然科学基金项目(No:60872073No:51075068) 广东省自然科学基金(10252800001000001)资助项目
关键词 支持向量机 混合蛙跳算法 模拟退火 support vector machine(SVM) shuffled frog leaping algorithm(SFLA) simulated annealing(SA)
  • 相关文献

参考文献18

  • 1Vapnik V N. The Nature of Statistical Learning Theory [ M ]. New York : Springer-Verlag, 1995. 被引量:1
  • 2Cortes C,Vapnik V N. Supporter vector networks[ J]. Machine Learning Machine. 1995,20 ( 3 ) : 273 - 297. 被引量:1
  • 3Osuna E, Freund R, Cirosi F. Improved training algorithm for sup- port vector machines [ C]//7th IEEE Workshop on Neural Net- works For Signal Processing,NNSP' 97. [ s. 1. ]//IEEE, 1997:276 - 285. 被引量:1
  • 4Platt J C. Fast Training of SVM using sequential minimal opti- mization [ C]//Advances in Kernel Methods-Support Vector Machine. Cambridge, MA : MIT Press, 1998 : 185 - 208. 被引量:1
  • 5Eusuff MM, Lansey KE. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization [ J ]. Engi- neering Optimization, 2006,38 (2) : 129 - 154. 被引量:1
  • 6Shi Y, Eberhart RC. A modified particle swarm optimizer [ C ]//IEEE International Conference on Evolutionary Com- putation. Anchorage, AK USA : [ s. n. ], 1998:69 - 73. 被引量:1
  • 7Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[ C]//2000 Congress on Ev- olutionary Computation. CA USA, La Jolla: [ s. n. ],2000: 84 - 88. 被引量:1
  • 8Delgado J, Sole RV. Self-synchronization and task fulfillment in ant colonies [ J ]. Journal of Theoretical Biology, 2000, 205 (3) :433 -441. 被引量:1
  • 9Paquet U, Engelbrecht A P. Training support vector machines with particle swarms [ C]//Processing of International JointConference on Neural Networks. 2003,2 : 1593 - 1598. 被引量:1
  • 10陈根军,王磊,唐国庆.基于蚁群最优的输电网络扩展规划[J].电网技术,2001,25(6):21-24. 被引量:112

二级参考文献20

  • 1李炳宇,萧蕴诗,吴启迪.一种基于粒子群算法求解约束优化问题的混合算法[J].控制与决策,2004,19(7):804-807. 被引量:48
  • 2Vapnik V N.The nature of statistical learning theory[M].New York: Springer-Verlag, 1995. 被引量:1
  • 3Cortes C,Vapnik V N.Supporter vector networks[J].Machine Learning, 1995,20( 3 ) : 273-297. 被引量:1
  • 4Kennedy J, Eberhart R C.Particle swarm optimization [C]//Proceedings of IEEE International Conference on Neural Networks,1995, 4:1942-1948. 被引量:1
  • 5Shi Y,Eberhart R C.A modified particle swarms optimizer[C]//Proceedings of IEEE Conference on Evolutionary Computation,Anchorage,Alaska,May 4-9,1998:69-73. 被引量:1
  • 6Paquet U,Engelbrecht A P.A new particle swarm optimizer for linearly constrained optimization[C]//Proceedings of IEEE Conference on Evolutionary Computation,2003,1:227-233. 被引量:1
  • 7Paquet U,Engelbrecht A P.Training support vector machines with particle swarms[C]//Proeeedings of International Joint Conference on Neural Networks,2003,2:1593-1598. 被引量:1
  • 8Eberhart R C,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proceedings of IEEE Conference on Evolutionary Computation,2000, 1:84-88. 被引量:1
  • 9Pasupuleti S,Battiti R.The Gregarious Particle Swarm Optimizer (G-PSO)[C]//Proceedings of GECCO' 06,2006,1 : 67-74. 被引量:1
  • 10Liang Y C,Proc 1999 Congress on Evolutionary Computation,1999年,1478页 被引量:1

共引文献142

同被引文献47

  • 1王辉,钱锋.群体智能优化算法[J].化工自动化及仪表,2007,34(5):7-13. 被引量:60
  • 2Kenndy J,Eberhart R C.Particle Swarm Optimization[C]// Proc.of IEEE Int' l Conf.on Neural Networks.Perth,Australia:[s.n.],1995,4 (2):1942-1948. 被引量:1
  • 3Sun Chaoli,Zeng Jianchao,Pan Jengshyang.A New Method for Constrained Optimization Problems to Produce Initial Values[C]//Proc.of Chinese Control and Decision Conference.Guilin,China:[s.n.],2009:2679-2681. 被引量:1
  • 4Storn R,Rrice K V.Differential Evolution--A Simple and Efficient Heuristic for Global Optimization over Continuous Space[J].Journal of Global Optimization,1997,11 (4):341-359. 被引量:1
  • 5Chen L,Brian K,JAamie E.Theoretical Characterization of Nonlinear Clipping Effectsin IM/DD Optical OFDM Sys.tems[J].IEEE Transactions on Communications,2012,60(8):2304-2312. 被引量:1
  • 6李英海,周建中,杨俊杰,刘力.一种基于阈值选择策略的改进混合蛙跳算法[J].计算机工程与应用,2007,43(35):19-21. 被引量:80
  • 7EUSUFF M M, LANSEY K E. Optimization of water distribution net- work design using the shuffled frog leaping algorithm[ J]. Water Re- source Planning and Management,2003,129 ( 3 ) :210-225. 被引量:1
  • 8AMIRI B, FATHIAN M, MAROOSI A. Application of shuffled frog leaping algorithm on clustering [ J ]. The International ,Journal of Advanced Manufacturing Technology,2009,45(1-2) :199-209. 被引量:1
  • 9ALIREZA R V, ALI H M. Solving a bicriteria permutation flow shop problem using shuffled frog-leaping algorithm [ J ]. Soft Computing, 2008,12 (5) :435- 452. 被引量:1
  • 10KENNDY J, EBERHART R C. Particle swarm optimization[ C ]// Proc of IEEE International Conference on Neural Networks. 1995: 1942-1948. 被引量:1

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部