期刊文献+

基于SVM的大样本数据回归预测改进算法 被引量:16

A Modified Regression Prediction Algorithm of Large Sample Data Based on SVM
下载PDF
导出
摘要 针对支持向量机回归预测精度与训练样本尺寸不成正比的问题,结合支持向量机分类与回归算法,提出一种大样本数据分类回归预测改进算法。设计训练样本尺寸寻优算法,根据先验知识对样本数据进行人为分类,训练分类模型,基于支持向量机得到各类别样本的回归预测模型,并对数据进行预测。使用上证指数的数据进行实验,结果表明,支持向量机先分类再回归算法预测得到的均方误差达到12.4,低于人工神经网络预测得到的47.8,更远低于支持向量机直接回归预测得到的436.9,验证了该方法的有效性和可行性。 A modified prediction method of large size data based on Support Vector Machine(SVM) classification and regression is proposed aiming at the problem that prediction accuracy of SVM regression is not proportional to the size of training sample. The method combines the SVM classification and regression algorithms. The size of the sample data is optimized, and the sample data is classified based on a priori knowledge. According to the classification, the classification model is trained. Then it trains the regression model for training sample of all classes, and makes the prediction with large size data based on SVM classification and regression. With the case of Shanghai Composite Index, the Mean Squared Error(MSE) of values predicted by the new method based on SVM classification and regression is 12.4, lower than 47.8 predicted by Artificial Neural Network(ANN) and much lower than 436.9 predicted by SVM regression. These results verify the effectiveness and feasibility of the method.
出处 《计算机工程》 CAS CSCD 2014年第1期161-166,共6页 Computer Engineering
基金 国家科技重大专项基金资助项目(2009ZX0414-103) 上海市引进技术的吸收与创新计划基金资助项目(11XI-07) 上海市科学技术委员会科研计划基金资助项目(11dz1121002)
关键词 支持向量机 大样本 尺寸优化 分类 回归 预测 Support Vector Machine(SVM) large sample size optimization classification regression prediction
  • 相关文献

参考文献12

二级参考文献50

共引文献2348

同被引文献203

引证文献16

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部