期刊文献+

基于梯度信息和区域互信息的图像配准 被引量:5

Image registration based on gradient and regional mutual information
下载PDF
导出
摘要 针对红外图像和可见光图像的特性,提出了基于梯度信息和区域互信息的红外与可见光图像配准。为了提高配准的速度,采用分层配准方法:使用小波分解将原始图像分为两层,在小尺度层上使用梯度信息和PSO方法找到粗配准参数,大尺度层上使用区域互信息和Powell搜索。其中,Powell搜索的初始值为粗配准参数,最终实现红外图像和可见光图像的有效配准。仿真实验结果表明:该算法配准精度高、速度快、鲁棒性好。 Aiming at the characteristics of infrared and visible images,an images registration method based on gradient information and regional mutual information is proposed in this paper. The hierarchical registration method is used in order to improve the registration speed. The original images are divided into two layers by wavelet decomposition. The coarse registration parameters are got by gradient information and PSO algorithm at the small scale layer. The fine parameters are found by using regional mutual information and Powell algorithm at the large scale layer,and the initial values of Powell algorithm are set as the coarse parameters. In the end the effective registration can be achieved. The experimental results show that the proposed method is of high accuracy,high speed and good robustness.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2017年第2期720-727,共8页 Journal of Guangxi University(Natural Science Edition)
基金 陕西省自然科学基础研究计划项目(2015JQ6221 2016JQ6064)
关键词 梯度信息 区域互信息 多层配准 Powell gradient information regional mutual information hierarchical registration Powell
  • 相关文献

参考文献6

二级参考文献56

  • 1江静,张雪松,兰西柱.红外与可见光图像互信息法自动配准算法研究[J].华北科技学院学报,2006,3(4):73-78. 被引量:5
  • 2Maes F, Collignon A, Vandermeulen D, et al. Multimodality Image Registration by Maximization of Mutual Information [ J ]. IEEE Transactions on Medical imaging, 1997, 16(2) : 187 - 198. 被引量:1
  • 3Pluim J P W, Maintz J B A, Viergever M A,et al. Mutual-Information-Based Registration of Medical Images: A Survey [ J]. IEEE Transactions on Medical Imaging, 2003, 22(8) : 986 - 1004. 被引量:1
  • 4Zheng Liu, Laganiere R. Registration of IR and EO Video Sequences Based on Frame Difference [ C ] //The Fourth Canadian Conference on Computer and Robot Vision, 2007,459 - 464. 被引量:1
  • 5Kim Kyoung Soo, Lee Jae Hak, Ra Jong Beom,et al. Robust Muhi-Sensor Image Registration by Enhancing Statistical Correlation [ C ]//The 8^th International Conference on Information Fusion,2005:380 - 386. 被引量:1
  • 6Pluim J P W, Maintz J B A, Viergever M A,et al. Image Registration by Maximization of Combined Mutual Information and Gradient Information [ C ] // Medical Imaging. Computing and Computer-Assisted Intervention,2000:103 - 129. 被引量:1
  • 7Rueckert D, Clarkson M J, Hill D L G, et al. Non - Rigid Registration Using Higher-Order Mutual Information [ C ]//The Proceeding of SPIE,2000. 被引量:1
  • 8INGLADA J,MURON V,PICHARD D,et al.Analysis of artifacts in subpixel remote sensing image registration[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45 (1):254-264. 被引量:1
  • 9SHU Lixia,TAN Tieniu.SAR and SPOT image registration based on mutual information with contrast measure[C] // Proceedings of the IEEE International Conference on Image Processing.Piscataway,NJ,USA:IEEE,2007:429-432. 被引量:1
  • 10PENG H,LONG F,DING C.Feature selection based on mutual information:criteria of max-dependency,max-relevance,and rain redundancy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27:1226-1238. 被引量:1

共引文献38

同被引文献42

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部