期刊文献+

基于多目标优化的SVM多类分类方法 被引量:2

SVM multi-class classification method based on multi-objective optimization
下载PDF
导出
摘要 为了利用ROC曲线下的面积(AUC),更好地评价多类SVM学习效果,提出了MOSMAUC(multi-objective optimizes multiclass SVM based on AUC)算法。该算法采用AUC作为评价标准,利用多目标优化算法作为SVM参数的优化方法,避免优化对象的AUC值过低问题,因为在多类分类学习中任何一个两类分类的AUC值太低,都会影响整体学习的效果。实验结果表明,提出的优化方法改进了算法的学习能力,取得了较好的学习效果。 In order to effectively apply AUC (area under the ROC curve) to do evaluation in multi-class SVM learning, an algorithm MOSMAUC (multi-objective optimizes multi-class SVM based on AUC) is proposed, where AUC is used as the evaluation criterion, multi-objective optimization is used to optimize learning parameters, since the low value of any AUC will decrease the learning performanee in the multi-class learning algorithm. Experimental results show the effectiveness of the proposed algorithm.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第8期1960-1962,1973,共4页 Computer Engineering and Design
关键词 支持向量机 ROC曲线下面积 多目标优化 多类分类学习 PARETO最优解 SVM AUC multi-objective optimizes multi-class learning paretooptimality
  • 相关文献

参考文献12

  • 1Cortes C,Vapnik V.Support vector networks[J].Machine Learning,1995,20:273-295. 被引量:1
  • 2张晓龙,江川,骆名剑.ROC分析技术在机器学习中的应用[J].计算机工程与应用,2007,43(4):243-248. 被引量:15
  • 3Spaekmaa.Signal detection theory:Valuable tools for evaluating inductive leaming[C].Proceeding of the Sixth International Workshop on Machine Learning,1989:160-163. 被引量:1
  • 4Hanley J A,McNeil B J.The meaning and use of the area under a receiver operating characteristic (ROC) curve[J].Radiology,1982,143(1):29-36. 被引量:1
  • 5Ling C X,Huang J,Zhang H.AUC:A statistically consistent and more discriminating measure than accuracy and AUC[C].Proceedings of 18th International Conference on Artifical Intelligence(IJCAI-2003),2003:329-341. 被引量:1
  • 6Zhang Xiaolong,Jiang Chuan.Improved SVM for learning multiclass domains with ROC EVALUATION[C].Hongkong,Chiua:Fifth International Conference on Machine Learning and Cybernetics(ICMLC 2007),2007:2891-2896. 被引量:1
  • 7崔逊学,林闯,方廷健.多目标进化算法的研究与进展[J].模式识别与人工智能,2003,16(3):306-314. 被引量:17
  • 8Dietterich T G,Bakiri G.Sloving multiclass learning problems via error correcting output codes[J].Jourual of Artificial Intelligence Research,1995(2):163-186. 被引量:1
  • 9Bose R C,Ray-Chaudhuri D K.On a class of error-correcting biuary group codes[J].Information and Control,1960(3):68-79. 被引量:1
  • 10张晓龙,江川.基于AUC的SVM多类分类方法的研究[J].计算机工程与应用,2007,43(14):166-169. 被引量:3

二级参考文献79

  • 1Hwang C L, Masud A S M. Multiple Objective Decision Making-Methods and Application. Berlin: Springer Verlag, 1979. 被引量:1
  • 2Deb K. Evolutioary Algorithms for Multi-Criterion Optimization in Engineering Desing. In: Kaisa M, et al, eds. Evolutionary Algorithms in Engineering and Computer Science, Chapter 8, John Wiley & Sons, Ltd, Chichester, UK, 1999, 135 - 161. 被引量:1
  • 3Fonseca C M, Finning P J. An Overview of Evolutionary Algorithms in Multiobjective Optimization. Evolutionary Computation,1995, 3(1): 1-16. 被引量:1
  • 4Wolpert D H, Macrmdy W G. No Free Lunch Theorems for Optimization. IEEE Trans on Evolutionary Computation, 1997, 1( 1 ) :67 - 82. 被引量:1
  • 5Schaffer J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. Ph. D Thesis, Vanderbilt University,USA, 1984. 被引量:1
  • 6Eckart Z, Kalyanmoy D, Lothar T, et al ; eds. Proc of the 1st International Conference on Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science No. 1993, Berlin:Springer-Verlag. 2001. 被引量:1
  • 7Schaffer J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Proc of the 1st International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hillsdale,1985, 93 - 100. 被引量:1
  • 8Fourman M P. Compaction of Symbolic Layout Using Genetic Algorithms. In: Grefenstette J J, ed. Proc of the International Conference on Genetic Algorithms and Their Applications, Pittsburgh,1985, 141 - 153. 被引量:1
  • 9Kursawe F. A Variant of Evolution Strategies for Vector Optimization. In: Sehwefel H P, Manner R, eds. Parallel Problem Solving from Nature-Proc of the 1st Workshop of Parallel Problem Solving from Nature, Berlin: Springer, 1991, 193-197. 被引量:1
  • 10Hajela P, Lin C Y. Genetic Search Strategies in Multi-Criterion Optional Design. Structural Optimization, 1992, 4: 99- 107. 被引量:1

共引文献71

同被引文献13

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部