期刊文献+

基于数字图像处理的燃气锅炉火焰检测算法 被引量:1

The Algorithm of Gas-fired Boiler Flame Detection Based on Digital Image Processing
下载PDF
导出
摘要 为了保证燃气锅炉安全稳定的燃烧,必须有效、可靠地对其进行火焰检测。传统锅炉火焰检测的难点在于很难精确地将火焰燃烧背景和目标火焰有效区分出来,为了克服这一缺陷,提出了一套完整的基于数字图像处理的燃气锅炉火焰检测算法:蚁群算法与小波变换结合,对运动的火焰进行识别,将火焰图像从背景中完整的分割出来。运用中值滤波的方法对图像中包含的大量噪声进行滤除,通过灰度变换对图像进行增强,从而有效准确地获取燃烧火焰信息。 In order to guarantee the combustion conditions, prevent the explosion accident and improve the fuel efficiency, the 'flame detection should be conducted effectively and reliably. For the traditional flame detection, it is difficult to distinguish the background from the target flame very well. So, the algorithm of gas -fired boiler flame detection based on digital image processing is described in this paper. It combines the ant colony algorithm and wavelet transformation to distinguish the flame from the background, uses the median filter to filter the noise in the image and the grey level transformation to enhance the image, and obtains the flame parameter effectively and correctly.
出处 《微处理机》 2013年第6期66-69,共4页 Microprocessors
关键词 燃气锅炉 蚁群算法 小波变换 中值滤波 灰度变换 Gas - fired boiler Ant colony algorithm Wavelet transformation Median filtering Greylevel transformation
  • 相关文献

参考文献8

  • 1C Stauffer,W Grimson. Adaptive Background Mixture Models for Real-time Tracking[A].1999.246-252. 被引量:1
  • 2AJ Lipton,H Fujiyoshi,R S Patil. Moving Target Classification and Tracking from Real-time Video[A].1998.8-14. 被引量:1
  • 3AVERRI Surss,E De Micheli. Motion Segmentation from Optical Flow[A].1989.209-214. 被引量:1
  • 4韩彦芳,施鹏飞.基于蚁群算法的图像分割方法[J].计算机工程与应用,2004,40(18):5-7. 被引量:38
  • 5BLUM C. Ant colony optimization:introduction and recent trends[J].{H}PHYSICS OF LIFE REVIEWS,2005,(08):353-373. 被引量:1
  • 6胡小兵..蚁群优化原理、理论及其应用研究[D].重庆大学,2004:
  • 7周昱,张杰,李昌禧.基于RGB模型的燃气火焰检测的图像处理方法[J].仪表技术与传感器,2010(11):85-87. 被引量:5
  • 8刘芳..基于数字图像处理的炉膛火焰检测及燃烧诊断系统研究[D].陕西科技大学,2008:

二级参考文献16

  • 1伍茜,沈季胜,刘震涛,俞小莉.动态图像差分法在热裂纹提取上的应用[J].兵工学报,2006,27(1):154-158. 被引量:2
  • 2Marco Dorigo,Gianni Di Caro,Luca M Gambardella.Ant Algorithms for Discrete Optimization[C].In:Proceedings of the Congress on Evolutionary Computation,http://citeseer.nj.nec.com/cachedpage/ 420280,1999 被引量:1
  • 3Hua Liu.Restoration of distorted digital images and similarity measure between images[EB/OL].http://citeseer.nj.nec.com,1999 被引量:1
  • 4BALDINI G, CAMPADELLI P. Combustion Analysis by Image Processing of Premixed Flames. Vancouver, BC, Canada,2000. 被引量:1
  • 5HANTON K, BUTAVICIUS M. improving infrared images for standoff object detection. Information Technology Interfaces, 2009:641 - 646. 被引量:1
  • 6HUA L, SHI-CHAO Z. A near infrared imaging detection system based on davinci platform. Beijing, China,2009. 被引量:1
  • 7YAMAGUCHI T, GRATI'AN K. A practical fiber optic air-ratio sensor operating by flame color detection. Review of Scientific Instruments, 1997,68 ( 1 ) : 197 - 202. 被引量:1
  • 8LI H, CHANG S. Color Context Analysis based Efficient Real -time Flame Detection Algorithm. Singapore,2008. 被引量:1
  • 9DU Feng, WENKANG S. infrared image segmentation with 2 - D maximum entropy method based on particle swarm optimization (PSO). Pattern Recognition Letters,2005,26 (5) :597 - 603. 被引量:1
  • 10Kyaw M M, Ahmed S K. Shape-Based Sorting of Agricultural Produce Using support vector machines in a MATLABSIMULINK Environment. Kuala Lumpur,2009. 被引量:1

共引文献41

同被引文献5

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部