期刊文献+

基于RGB模型的燃气火焰检测的图像处理方法 被引量:5

Imagery Processing Method of Gas Flame Examination Based on RGB Model
下载PDF
导出
摘要 火焰图像识别现在已有较为成熟的方法和实现手段,然而大多数方法都是针对脉动强烈,且主色为红色的火焰的。而高炉煤气火焰的特征为焰色淡蓝,且基本无脉动。因此,传统的火焰检测方法不适用于高炉煤气火焰的检测。文中针对高炉煤气火焰的特点,提出了一套基于蓝色色彩的图像处理的检测方法。摄像头采用全光谱摄像机,保证取得完整的燃气火焰视频。在后期的处理上,首先使用背景差分法过滤掉与火焰不相关的背景信号;然后利用火焰的颜色信息对图像进行滤波增强,主要是增强火焰的蓝色分量的信息;最后用O tsu法确定阈值对图像进行二值化处理。这种方法的特点是利用了燃气火焰的颜色特征,对其RGB 3个通道图像分别进行不同的处理;同时利用其脉动小的特征对其进行背景分割。模拟实验结果表明,该方法可以准确地分割出燃气火焰的图像,从而提高了识别此类火焰的准确率。 Various practical methods have been proposed for flame image recognition.Most of the methods face the flames flickering and with red as its main color,while the high furnace gas flame is stable and light blue in color.This paper presented an image processing approach for high furnace gas flame examination based on the color characteristic of the flame.A full spectrum camera was adopted to ensure complete video clip of the flame.Post process was performed as follows.Unrelated background information was removed by background difference method.Then imagine enhancement using filtering methods was performed with color information of the flame.Image binarization was conducted using Otsu method.The proposed approach is unique in utilizing the color and relative stable character of the gas flame.Simulation results show that the approach can extract the image of the flame with high precision.
出处 《仪表技术与传感器》 CSCD 北大核心 2010年第11期85-87,90,共4页 Instrument Technique and Sensor
关键词 燃气火焰 RGB向量 颜色分割 OTSU法 gas frame RGB vector color segmentation Otsu algorithm
  • 相关文献

参考文献13

二级参考文献37

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:356
  • 2袁非牛,廖光煊,张永明,刘勇,于春雨,王进军,刘炳海.计算机视觉火灾探测中的特征提取[J].中国科学技术大学学报,2006,36(1):39-43. 被引量:52
  • 3李立源,龚坚,陈维南.基于二维灰度直方图最佳一维投影的图像分割方法[J].自动化学报,1996,22(3):315-322. 被引量:49
  • 4李景真.光学手册[M].西安:陕西科技出版社,1986.. 被引量:2
  • 5[1]Collins R,Lipton A J,Kanade T,et al.A System for Video Surveillance and Monitoring:Final Report[R].Technical Report:CMU-RI-TR-00-12,Carnegie Melon University,Pittsburgh,Peen,America,2000. 被引量:1
  • 6[2]Sen-Ching S.Cheung and Chandrika Kammath,Robust techniques for background subtraction in urban traffic video[A],In:Proceedings of SPIE Electronic Imaging:Visual Communications and Image Processing[C],San Jose,California,USA,2004,1:881-892. 被引量:1
  • 7[3]Fuentes L,Velastin S.From tracking to advanced surveillance[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,2003. 被引量:1
  • 8[4]Cucchiara R,Piccardi M,Prati A.Detecting moving objects,ghosts,and shadows in video streams[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(10):1337-1342. 被引量:1
  • 9[5]Haritaoglu I,Harwood D,Davis L.W4:Real-time surveillance of people and their activities[J].IEEE Transactions on Patterns Analysis and Machine Intelligence,2000,22(8):809-830. 被引量:1
  • 10[6]Prati A,Mikic I,Trivedi M,et al.Detecting moving shadows:algorithms and evaluation[J].IEEE Transactions on Patterns on Patterns Analysis and Machine Intelligence,2003,25(7):918-923. 被引量:1

共引文献89

同被引文献21

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部