期刊文献+

基于消费者在线评论的模糊智能产品推荐系统 被引量:3

Fuzzy Intelligent Recommendation System Based on Consumer Online Review
原文传递
导出
摘要 针对消费者的自然语言型模糊产品需求,通过搜索在线评论产品评论,在挖掘产品的显式和隐式多特征基础上,利用语义情感计算技术,对用户评论中的这些属性进行模糊化表示,并与所构建的产品推荐模糊规则结合,实现了基于在线评论的个性化产品模糊智能推荐以及系统平台的开发。通过实验计算验证了推荐方法和系统的有效性。 Many consumers only have fuzzy requirement for products, because they are not the experts of the domain who have much experience in products. The system mines explicit attributes and implicit products attributes from online review. Through using nature language sentiment analysis technology and building the fuzzy inference rules based on these products attributes, the system can understand the sentiment of the consumers' review which shows system's intelligence. The sentiment words of implicit product attributes are expressed by the fuzzy function which is the foundation of the sentiment calculation. Finally the experiment proves that our recommendation method is effective and can satisfy consumers' requirement.
出处 《系统工程》 CSSCI CSCD 北大核心 2013年第11期116-120,共5页 Systems Engineering
基金 国家自然科学基金项目(61072128) 辽宁省自然科学基金项目(201102024) 大连市科技计划项目(2011A17GX078)
关键词 在线评论 模糊推荐 情感计算 模糊推理 Online Review Fuzzy Recommendation Sentiment Computing Fuzzy Inference
  • 相关文献

参考文献9

  • 1Liu B, et al. Opinion observer.. Analyzing and comparing opinions on the web [C] // Proceedings of the 14th international conference on World Wild Web, Chiba, Japan, 2005 : 342 - 351. 被引量:1
  • 2Dave K, Lawrence S, Pennock D.M. Mining the peanut gallery: Opinion extraction and semantic classification of product reviews [C] // Proceedings of the 12th international conference on World Wide Web, Budapest, Hungary, 2003 : 519 - 528. 被引量:1
  • 3Popescu A M, et al. Extracting product features and opinions from reviews [C] // Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, Vancouver,B. C. , Canada, 2005 : 339- 346. 被引量:1
  • 4Pang B, Lee L. Opinion mining and sentiment analysis [J]. Foundations and Trends in Information Retrieval, 2008,2 (1) : 1- 135. 被引量:1
  • 5Che W X,et al. LTP:A Chinese language technology platform[C] // Proceedings of the 23rd International Conference on Computational Linguistics: Demonstrations, Beijing, 2010 : 13 - 16. 被引量:1
  • 6李实..中文网络客户评论中的产品特征挖掘方法研究[D].哈尔滨工业大学,2009:
  • 7Gamgarn Somprasersri, Pattarachai Lalitrojwong. Mining feature-opinion in online customer reviews for opinion summarization [J]. Journal of Universal Computer Science, 2010,16 (6) : 938- 955. 被引量:1
  • 8TimothyJ Ross.模糊逻辑及其工程应用[M].北京:电子工业出版社,2001.. 被引量:9
  • 9Jaro M A. Probabilistic linkage of large public health data files [J]. Statistics in medicine, 1995, 14 (5): 491-498. 被引量:1

共引文献8

同被引文献48

  • 1张魁,郭钢,陈宓,范登龙.顾客潜在需求心理隐喻引出技术研究[J].市场研究,2006(4):41-45. 被引量:4
  • 2魏丽坤.Kano模型和服务质量差距模型的比较研究[J].世界标准化与质量管理,2006(9):10-13. 被引量:60
  • 3Vinodhini G, Chandrasekaran R M. Sentiment analysis and opinion mining: a survey[ J ]. International Journal of Advanced Research in Computer Science and Software Engineering, 2012, 2 ( 6 ) : 282-292. 被引量:1
  • 4Li C P, Guo L H, Lin N. Value Mining of Product Reviews Based on Sentiment Analysis [ C ]//Applied Mechanics and Materials, 2015, 1 ( 713-715 ): 2528-2531. 被引量:1
  • 5Gebauer J,Tang Y, Baimai C. User requirements of mobile technology: Results from a content analysis of user reviews [ J ]. Information Systems and e-Business Management, 2008,6 ( 4 ) : 361-384. 被引量:1
  • 6Kano N,Seraku N,Takahashi F,et al. Attractive Quality and Must-Be Quality [ J ]. Journal of the Japanese Society for Quality Control, 1984, 14(2) :147-156. 被引量:1
  • 7Che Wanxiang,Li Zhenghua, Liu Ting. LTP: A Chinese Language Technology Platform [ C ]//Proceedings of the Coling 2010:Demonstrations , Beijing, China. 2010,08 : 13-16. 被引量:1
  • 8Blei D M, Ng A Y, Jordan M I. Latent DirichletAllocation [ J]. Journalof Machine Learning Research, 2003,3 ( 4- 5 ) :993-1022. 被引量:1
  • 9Marrese-Taylor E, Vel6squez J D, Bravo-Marquez F. A novel deterministic approach for aspect-based opinion mining in tourism products reviews[ J ]. Expert Systems with Applications, 2014, 41 (17) : 7764-7775. 被引量:1
  • 10段黎明,黄欢.QFD和Kano模型的集成方法及应用[J].重庆大学学报(自然科学版),2008,31(5):515-519. 被引量:33

引证文献3

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部