摘要
根据粒子群算法可以搜索全局最优的特点,提出一种新的基于粒子群算法优化模糊隶属函数,从而对带有脉冲噪声图像进行模糊中值滤波的方法.该方法给出一个新的模糊熵定义,采用改进粒子群优化算法寻求隶属函数的最优参数,依照最大熵准则将图像变换到模糊域,然后对需要处理的噪声图像进行滤波.实验表明,提出的方法可以很好地滤除图像中的脉冲噪声,自适应性强.
In this paper, a new method of membership function based on fuzzy theory of particle swarm optimization (PSO) algorithm is proposed since particle swarm optimization (PSO) algorithm is an efficient tool for search optimization. A new entropy definition of a fuzzy set is proposed, by using a new particle swarm optimization (PSO) algorithm to find the optimization parameters for membership. Then using this membership function, fuzzy median fiher can filter the purlse noise. Using our new algorithm to filter the pulse noise , we can get a better result.
出处
《沈阳理工大学学报》
CAS
2007年第1期1-4,共4页
Journal of Shenyang Ligong University
基金
辽宁省自然科学基金资助项目(20042034)
关键词
模糊熵
隶属函数
粒子群优化算法
中值滤波
fuzzy entropy
membership function
particle swarm optimization (PSO)
median filter