期刊文献+

基于时变混合Copula-MAR模型的股市间风险传染分析 被引量:3

Analysis of Risk Infection between Stock Markets Based on Time-varying Mixed Copula-MAR Model
下载PDF
导出
摘要 随着经济全球化的发展,金融市场间的风险传染问题越来越受到学术界的关注。本文利用高斯混合自回归(MAR)模型估计收益率的边际分布,其独立性等检验表明,MAR模型能很好地描述"尖峰厚尾"和"有偏"的现象。通过利用权重时变的混合Copula描述收益率间的动态非线性和非对称的动态相关性,本文对中国股市与国际主要股市的相关性进行实证研究,结果表明,无论是从下尾相关性还是上尾相关性来看,中国股市与美、英、日主要股市之间的相关性均还处于较低水平,与香港股市的相关程度相对较高。而当异常事件发生时,美、英、日和香港股市对中国股市的风险传染效应则十分显著。 With the development of economic globalization, scholars have paid more and more attention to the problem of risk infection between financial markets. By using Gaussian Mixture Autoregressive model ( MAR ) , this paper estimates the marginal distribution of yields. Test on independence indicates that MAR can befit well to describe the hiasness and the phenmnena of "sharp peak and thick tail" . In the meantime, the paper also describes nonlinear dynamic charaeleristic and dynamic asymmetric dependence between different yields in the use of mixed Copula weighted by time-varying. The results of empirical tests between Chinese stock market and that of international main markets show that, no matter it is the lower-tail dependence or upper -tail dependence, China is little dependent on the U.S., Britain and Japan. However, a strong dependence appears between the China's Mainland and Hong Kong' s stock market. When exceptional events take place, risk infection effects on China's Mainland which are conducted by all the above four places are significant.
机构地区 浙江工商大学
出处 《南方金融》 北大核心 2013年第10期80-84,共5页 South China Finance
基金 浙江工商大学研究生创新基金(项目编号:1060XJ1512086)的资助
关键词 股票市场 金融风险 风险传染 时变混合Copula—MAR模型 Stock Market Financial Risk Risk Infection Time-varying Copula-MAR Model
  • 相关文献

参考文献8

  • 1Patton A. J.. Modeling Asymmetric Exchange Rate Dependence[J]. International Economic Review, 2006, 47(2). 被引量:1
  • 2Patton A. J.. Estimation of Multivariate Models for Time Series of Possibly Different Lengths[J]. Journal of Applied Econometrics, 2006, 21 (2). 被引量:1
  • 3Xu Q., Li X.. Estimation of Dynamic Asymmetric Tail Dependences: An Empirical Study on Asian Developed Futures Markets[J]. Applied Financial Economics, 2009, (4). 被引量:1
  • 4Hu J.. Dependence Structures in Chinese and US Financial Markets : A Time-varying Conditional Copula Approach[J]. Applied Financial Economics, 2010, (21). 被引量:1
  • 5Yue E,Wing L. N.. Analysing Financial Contagion and Asymmetric Market Dependence with Volatility Indices Via Copulas[J]. Annals of Finance, 2012, (7). 被引量:1
  • 6Wong C. S., Li W. K.. On A Mixture Autoregressive model[J]. Royal Statistical Society, 2000, (1). 被引量:1
  • 7刘喜波,林泽波.次贷危机后国际股票市场相关性变动的Copula分析[J].数学的实践与认识,2009,39(24):31-35. 被引量:9
  • 8田光,张瑞锋.基于Copula的股票市场波动溢出分析[J].财经理论与实践,2011,32(6):53-58. 被引量:7

二级参考文献12

  • 1Tarmur Baig, llan Goldfajn. Financial market contagion in the asian crisis[J]. IMF Staff Papers, 1999,46 (2) : 167-195. 被引量:1
  • 2Francois Longin. Extreme correlation of international equity markets[J]. Journal of Finance, American Finance Association, 2001,56(2):649-676. 被引量:1
  • 3ForBes K, Rigobon R. No contagion, only interdependence: measuring stock markets comovements [J]. The Journal of Finance, 2002,57(5): 2223-2261. 被引量:1
  • 4Nelson R B. An Introduction to Copulas[M]. New York, Springer, 1999. 被引量:1
  • 5Embrechts P, Lindskog F, McNeil A J. Modelling dependence with copulas and applications to risk management[J].Handbook of Heavy Tailed Distribution in Finance, 2001:329- 384. 被引量:1
  • 6Sklar A. Fonctions de repartition d n dimensions et leurs marges [J]. Publication de 1" Institut de Statistique de l'Universit~ de Paris, 1959,8:229--231. 被引量:1
  • 7Kim S, N Shephard, S Chib, Stochastic Volatility: Likelihood Inference, Comparison with ARCH Models[J]. Review of Eco- nomic Studies, 1998, 65:361--393. 被引量:1
  • 8Diebold F X, Hahn J, Tay A S. Multivariate density forecast e- valuation and calibration in financial risk management: high-- frequency returns on foreign exchange[J]. The Review of Eco- nomics and Statistics, 1999, 81(4): 661--673. 被引量:1
  • 9黄违洪 张世英.模型结构变化点检测法.应用数学学报,1987,:267-275. 被引量:3
  • 10Patton A J. Modeling time-varying exchange rate dependence u- sing the conditional eopula[J]. Working Paper of Department of Economics, University of California, San Diego, 2001. 被引量:1

共引文献14

同被引文献28

  • 1刘鸿儒.借鉴英国AIM成功经验 尽快推出我国创业板市场——在第五届中小企业融资论坛上的讲话[J].深交所,2006(12):17-21. 被引量:5
  • 2韦艳华,张世英.多元Copula-GARCH模型及其在金融风险分析上的应用[J].数理统计与管理,2007,26(3):432-439. 被引量:72
  • 3Patton A J. Modeling Time-Varying Exchange Rate Dependence Using the Conditional Copula[Z].Department of Economics,University of California,San Diego, 2001. 被引量:1
  • 4Robert A.Korajczyk. A Measure of Stock Market Intergration for Developed and Emerging Markets[J]. The World Bank Economic Review, 1996, (10). 被引量:1
  • 5Mohamed EI Hedi, Fredj J. Nonlinear Stock Market Integration in Emerging Countries[J].Intemational Journal of Economics and Finance, 2010, 2(05). 被引量:1
  • 6Bruno Solnik,Cyril Boucrelle ,Yann Le Fur. International Market Correlation and Volatility[J].Financial Analysts Journal, 1996, (52): 17-34. 被引量:1
  • 7Philipp J.Schonbucher, Dirk Schubert. Copula-Dependent Default Risk in Intensity Models[J].Department of Statistics,Bonn University, 2002. 被引量:1
  • 8Puja Padhi,M.A.Lagesh. Volatility Spillover and Time-Varying Correlation Among the Indian,Asian and US stock Markets[J].JoumaI of Quantitative Economics, 2012, (10). 被引量:1
  • 9Andrew J.patton. Modelling Asymmetric Exchange Rate . Dependence[J].International Economic Review, 2006, (47). 被引量:1
  • 10Audrew J.Patton. Copula Methods for Forecasting Mtdtivariate Time Series[J]. Forthcorning in the Handbook of Economic Forecasting, 2012, (02). 被引量:1

引证文献3

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部