期刊文献+

基于混合copula函数的沪深股市与香港股市一体化趋势分析 被引量:7

An analysis of the integration trend of Shanghai &Shenzhen stock markets and Hong Kong stock market based on the mixed-copula
下载PDF
导出
摘要 沪深股市与香港股市近年来分割状况改善,出现"一体化"发展趋势.测定两市相依结构和波动溢出效应对于市场参与各方具有重要意义.结合传统的协整检验、Granger因果检验和VEC模型,引入混合copula函数对两市代表性指数——沪深300指数和恒生中国企业指数进行相关性分析.参数估计方面,利用非参数核密度方法估计边缘分布,结合EM算法计算混合copula的参数.实证结果表明两个市场具有显著相关性,且上尾相关性大于下尾相关性;混合copula函数与单copula函数分析结果一致,拟合效果优于单copula函数. The gap between the mainland stock market and Hong Kong stock market has been reduced m recent years and there is a tendency toward their "integration". It is very important for all market participants to measure the degrees and patten of dependence and the volatility spillover between the two markets. Mixedcopula was established, as well as cointegration test, Granger causality test, the VEC model and also the single copula, to analyze the correlation between the representative indices of the two markets. The method of nonparameter kernel density estimation was used to estimate marginal distribution and EM algorithm was used to estimate the parameters of mixedcopula. The empirical results show that the two markets have larger upper tail dependence than lower tail dependence and that the mixedcopula has the best goodnessoffit test effects result among selected copulas.
作者 操颖 方兆本
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第6期508-515,共8页 JUSTC
关键词 “一体化”趋势 波动溢出效应 混合copula函数 非参数核密度估计 EM算法 integration volatility spillover mixed-copula non-parameter kernel density estimation EMalgorithm
  • 相关文献

参考文献17

  • 1Friedman J, Shachmurove Y. Co-movements of major European stock markets: A vector autoregression analysis[J]. Global Finance Journal, 1997, 8(2) :257- 277. 被引量:1
  • 2Bessler D A, Yang J, Wongeharupan M. Price dynamics in the international wheat market: Modeling with error correction and directed acyclic graphs [J].Journal of Regional Science, 2003, 43 (1) : 1-33. 被引量:1
  • 3石建勋,钟建飞,李海英.金融危机前后内地与香港股市联动性及引导性变化的实证研究[J].统计与信息论坛,2011,26(2):42-47. 被引量:8
  • 4Embrechts P, McNeil A, Straumann D. Correlation and dependence in risk management: Properties pitfalls [C]// Risk Management, Value at Risk and Beyond. Cambridge University Press, 2002. 被引量:1
  • 5Sklar A. Function de Repartition an Dimensions et Leurs Marges, Vol. 8 [M]. Paris: Publications del'Institute Statistique de I'Universite Paris, 1959. 被引量:1
  • 6Nelsen R B. An Introduction to Copulas [M]. New York: Spring-Verlag, 1999. 被引量:1
  • 7Rockinger M, Jondeau E. Conditional dependency of financial series: An application of copulas[M]. Paris: HEC, 2001. 被引量:1
  • 8Rodriguez J C. Measuring financial contagion: A copula approach[J]. Journal of Empirical Finance, 2007, 14(3):401-423. 被引量:1
  • 9Guegan D, Zhang J. Change analysis of a dynamic copula for measuring dependence in multivariate financial data[J].Quantitative Finance, 2010, 10(4) : 421-430. 被引量:1
  • 10韦艳华,张世英,郭焱.金融市场相关程度与相关模式的研究[J].系统工程学报,2004,19(4):355-362. 被引量:83

二级参考文献52

共引文献164

同被引文献64

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部