期刊文献+

数据驱动模型与概念性模型的应用对比 被引量:8

Comparison between the Application of Data-driven Model and Conceptual Model
下载PDF
导出
摘要 BP神经网络与K-最近邻(KNN)算法相耦合所建立的BK(BP-KNN)模型是一种数据驱动模型,它克服了传统的BP神经网络模型必需前期实测流量、泛化能力不强的缺点。IHACRES模型是一种结构简单、应用广泛的以单位线为基础的集总式概念性模型。选择板桥、马渡王两个流域分别运用BK模型、IHACRES模型和新安江模型进行径流模拟。模拟结果表明,BK模型的模拟效果最好,IHACRES模型次之;说明数据驱动模型在水文模拟中有着巨大的运用空间。 The BK (BP-KNN) coupling model constituted by BP neural network model and K-nearest neighbor algorithm is a kind of data-driven model, which can overcome the shortage of the necessary of real-time forecasting discharge and the weakness of generalization ability in traditional BP neural network model. The IHACRES model which is widely applied and simple in structure is a kind of lumped conceptual model based on Unit Hydrograph (UH). The BK model, IHACRES model and Xin'anjiang model are applied to simulate the runoffs of Banqiao Watershed and Maduwang Watershed respectively. The results show that the BK model has a best simulation performance and the IHACRES model is second. It illustrates that the data-driven model has a ~reat application space in hydrology simulation.
出处 《水力发电》 北大核心 2013年第12期9-12,共4页 Water Power
基金 国家自然科学基金资助项目(41130639 51179045 41201028) 水利部公益项目(201201058-1) 江苏省普通高校研究生科技创新计划资助项目(CXZZ11_0435)
关键词 BP神经网络 K-最近邻算法 IHACRES模型 新安江模型 BP neural network K-nearest neighbor algorithm IHACRES model Xin'anjiang model
  • 相关文献

参考文献11

二级参考文献75

  • 1朱星明,卢长娜,王如云,白婧怡.基于人工神经网络的洪水水位预报模型[J].水利学报,2005,36(7):806-811. 被引量:48
  • 2刘勇,王银堂,陈元芳,王宗志,胡健,冯小冲.丹江口水库秋汛期长期径流预报[J].水科学进展,2010,21(6):771-778. 被引量:34
  • 3隋彩虹,徐宗学.人工神经网络模型在渭河下游洪水预报中的应用[J].水文,2006,26(2):38-42. 被引量:12
  • 4Shin C, Yun U, Kim H, Park S. A hybrid approach of neural network and memory-based learning to data mining. IEEE Trans. on Neural Networks, 2000, 11(3): 637 - 46. 被引量:1
  • 5Wettschereck D, Aha D W, Mohri T. A review and empirical evaluation of feature weighting metbords for a class of lazy learning algorithms. AI Review, 1997, 11 (2): 273 - 314. 被引量:1
  • 6范明 孟小峰.数据挖掘概念与技术:第七章第七节[M].北京:机械工业出版社,2001.. 被引量:1
  • 7Kuncheva L I. Fitness Functions in Editing k-nn Reference Set by Genetic Algorithms. Pattern Recognition, 1997, 30(6):1041 - 1049. 被引量:1
  • 8Setiono R, Liu H. Neural-network feature selector. IEEE Trans.on Neural Networks, 1997 8(3): 654 - 662. 被引量:1
  • 9Guha S, Rastugi R, Shim K. CURE: An efficient clustering algorithm for large databases. In Proc. 1998 ACM-SIGMOD Int.Conf. Management of Data (SIGMOD'98), Seattle, WA, June 1998:73 - 84. 被引量:1
  • 10Pemg C, Wang H, Zhang S, parker D. Landmarks: A new model for similarity-based pattern querying in time series databases.IEEE Conf. on Data Engineering, 2000:33 - 44. 被引量:1

共引文献56

同被引文献89

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部