期刊文献+

公路运行车速预测模型对比分析 被引量:10

Comparative analysis of prediction model for vehicle operating speed
原文传递
导出
摘要 为了对公路运行车速进行准确预测,采集了国道二级公路上232处典型路段的平曲线半径和纵坡度等线形数据和小轿车车速,分别应用线性回归、多项式回归和智能学习型方法中的BP神经网络和模糊神经网络建立了小轿车第85百分位车速模型,并对4种模型预测精度进行了对比分析。结果表明:在回归模型中,多项式回归的预测精度优于线性回归;在学习型算法中,模糊神经网络的预测精度优于BP神经网络,并且模糊神经网络的预测精度优于统计回归方法;从模型使用角度来看,相比较于线性回归模型要求样本随机误差满足零均值和正态分布等假设条件,神经网络算法的限制条件较低,具有更广阔的应用前景。 In order to accurately predict vehieule operating speed, 232 samples gathered from the second-level highway, including curve radius, slope and driving speed. Linear regression, poly- nomial regression and intelligent methods such as Back-Propagation neural network and fuzzy neural network were employed to predict the 85th percentile operating speed respectively and the prediction accuracies by four models were compared and analyzed. The results show that the per- formance of polynomial regression is superior to that of the linear regression and the fuzzy neural net is superior to the BP neural net. Additionally, the results indicate that the fuzzy neural net- work can get a better prediction accuracy than that by statistical regression and its restrictive con- ditions are lower, so it is of more potential in the application than the regression models. 1 tab, 10 figs, 10 refs.
出处 《长安大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第5期81-85,共5页 Journal of Chang’an University(Natural Science Edition)
基金 新疆维吾尔自治区科技支疆项目(201191121) 中央高校基本科研业务费专项资金项目(CHD2011JC16)
关键词 交通工程 运行车速 线性回归 多项式回归 BP神经网络 模糊神经网络 traffic engineering operating speed linear regression polynomial regression BPneural net fuzzy neural net
  • 相关文献

参考文献10

  • 1Morrall J, Talarico R J. Side friction demanded and margin of safety on horizontal curves[C]//Transpor- tation Research Record. National Research Council.Washington DC: Transportation Research Record, 1994:145-152. 被引量:1
  • 2范振宇,张剑飞.公路运行车速测算模型的研究和标定[J].中国公路学报,2002,15(1):107-109. 被引量:38
  • 3Fitzpatrick K, Elefteriadou L, Harwood D. Speed prediction for two-lane rural highways[R]. Washington DC: Federal Highway Administration, US Department of Transportation, 2000. 被引量:1
  • 4Lamm R,Choueiri E M, Haywary J. Possible design procedure to promote design consistency in highway geometric design on two-lane rural roads[C]//Transportation Research Record. National Research Coun- cil. Washington DC.. Transportation Research Record, 1998:111-122. 被引量:1
  • 5Krammes R A,Bracket Q,Shafer M A. Horizontal a-lignment design consistency for rural two-lane high- ways[R]. Washington DC: Federal Highway Admin-istration, U S Department of Transportation, 19 9 5. 被引量:1
  • 6Mcfadden J, Yang W T,Durrans S R. Applications of artificial networks to predict speeds on two-lane rural highways [J]. Journal of Transportation Research Board, 2001,1751 (2): 9-17. 被引量:1
  • 7魏朗,陈涛,高丽敏,代素珍.汽车驾驶员车速控制模式的模拟研究[J].汽车工程,2005,27(6):696-701. 被引量:17
  • 8张弛.考虑空间视野的高速公路运行速度预测模型与应用研究[D].西安:长安大学,2010. 被引量:1
  • 9何晓群,刘文卿编著..应用回归分析[M].北京:中国人民大学出版社,2007:294.
  • 10Freeman A J, Skapura D M. Neural networks: algorit hms,applications,and programming techniques[M]. Massachusetts: Addison-Wesley, 1991. 被引量:1

二级参考文献7

共引文献50

同被引文献77

引证文献10

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部