期刊文献+

求解非线性时滞双曲型偏微分方程的紧致差分方法及Richardson外推算法 被引量:1

A COMPACT DIFFERENCE SCHEME AND RICHARDSON EXTRAPOLATION ALGORITHM FOR SOLVING A CLASS OF THE NONLINEAR DELAY HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 本文构造了一类求解非线性时滞双曲型偏微分方程的紧致差分格式,获得了该差分格式的唯一可解性,收敛性和无条件稳定性,收敛阶为O(Γ~2+h^4),并进一步对时间方向进行Richardson外推,使得收敛阶达到了O(Γ~4+h^4).数值实验表明了算法的精度和有效性. In this paper, a class of compact difference schemes are constructed to solve the nonlin- ear delay hyperbolic partial differential equations. The unique solvability, convergence and unconditional stability of the scheme are obtained. The convergence order is O(T2-h4). Furthermore, the Richardson extrapolation is applied to improve the temporal accuracy of the scheme, and a solution of order four in both temporal and spatial dimensions is obtained. Numerical example shows the accuracy and efficiency of the algorithms.
出处 《数值计算与计算机应用》 CSCD 2013年第3期167-176,共10页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金资助项目(11171125) 国家自然科学基金重大研究计划重点项目(9113000) 湖北省自然科学基金资助项目(2011CDB289) 国家留学基金项目(201306160037)
关键词 紧致差分格式 唯一性 稳定性 收敛性 RICHARDSON外推 Compact difference scheme Solvability Convergence Stability Richard-son extrapolation
  • 相关文献

参考文献18

  • 1Rezounenko A V, Wu J H. A non-local PDE model for population dynamics with state-selective delay: local theory and global attractore].I]. J. Compo Appl. Math., 2006, 190: 99-113. 被引量:1
  • 2Thmwiine J, Luckhaus S, Mugisha J Y T. Luboobi L S, An age-structured mathematical medol for the within host dynamics of malaria and the immune systemj.I], J. Math. Medol Algor., 2008, 7: 79-97. 被引量:1
  • 3Adimy M, Crauste F. Global stability of a partial differential equation with distributed delay due to cellular replication],l]. Nonlinear Anal., 2003, 54: 1469-1491. 被引量:1
  • 4Sun Z Z. On the compact difference scheme for heat equation with Neuman boundary conditions],l], Numer. Methods Partial Diff. Eqns., 2009, 25: 1320-1341. 被引量:1
  • 5Huang C M, Stefan V. Unconditionally stable difference methods for delay partial differential equations[J]. Numer. Math., 2012, 122: 579-601. 被引量:1
  • 6Huang C M, Stefan V. An analysis of delay-Dependent stability for ordinary and partial differential equations with fixed and distributed delaysj.l]. SIAM J. Sci. Comput., 2004, 25(5): 1608-1632. 被引量:1
  • 7Driver RD. Ordinary and delay differential equations[M]. Springer-Verlag, 1977. 被引量:1
  • 8Zhang C J, Zhou S Z. Nonlinear stability and D-convergence of Runge-Kutta methods for delay differential equations[J]. J. Compo Appl. Math., 1997, 85: 225-237. 被引量:1
  • 9Hale J. Theory of Functional Differential Equations[M]. Springer-Verlag, 1993. 被引量:1
  • 10Kolmanovskii V B, Myshkis A, Introduction to the Theory and Applications of Functional DiFer?ential Equations[M]. Kluwer Academic Publishers, Dordrecht, 1999. 被引量:1

二级参考文献19

  • 1王宁,王培光,孙晓玲.一类具分布式偏差变元的双曲型向量泛函微分方程解的H-振动性[J].应用泛函分析学报,2007,9(1):63-69. 被引量:8
  • 2DOMSLAK Ju I. On the oscillation of solutions of vector differential equations[J].Soviet Math Dokl, 1970, 11:839-841. 被引量:1
  • 3DOMSLAK Ju I. Oscillatory properties of solutions of vector differential equations [J].Diff Eqs, 1971, 7:728-734. 被引量:1
  • 4NOUSSAIR E S, SWANSON C A. Oscillation theorems for vector differential equations[J].Utilitas Math, 1972, 1:97-109. 被引量:1
  • 5KREITH K. A nonselfadjoint dynamical system[J]. Proc Edinburgh Math Soc, 1974, 19(2) :77-87. 被引量:1
  • 6NOUSSAIR E S, SWANSON C A. Oscillation of nonlinear vector differential equations[ J]. Ann Math Pura Appl, 1976, 109 ( 1 ) :305-315. 被引量:1
  • 7MINCHEV E, YOSHIDA N. Oscillation of solutions of vector differential equations of parabolic type with functional arguments[J].J Comput Appl Math, 2003, 151 (1) :107-117. 被引量:1
  • 8LI W N, HAN M A, MENG F W. H-oscillation of solutions of certain vector hyperbolic differential equations with deviating arguments[J]. Appl Math Compnt, 2004, 158(3) :637-653. 被引量:1
  • 9COURANT R, HILBERT D. Methods of mathematical physics [ M]. New York: Interscience,1996. 被引量:1
  • 10LI W N, HAN M A. Oscillation of solutions for certain impulsive vector parabolic differential equations with delays[J]. J Math Anal Appl, 2007, 326( 1 ) :363-371. 被引量:1

共引文献88

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部