期刊文献+

一类高精度非线性延迟抛物偏微分方程的紧差分格式 被引量:4

A High-precision Compact Difference Scheme for A Class of Nonlinear Delay Parabolic Partial Differential Equations
下载PDF
导出
摘要 对一类带有初边值问题的非线性延迟抛物偏微分方程建立了一个Crank-Nicolson型的线性化差分格式,并用离散能量法证明了该差分格式解的存在性、唯一性和收敛性,该差分格式在L∞范数下的收敛阶数为o(τ2+h4).仿真结果表明,该方法优于文献[3]的算法. A linearized Crank-Nicolson scheme is estabilished for a class of nonlinear delay parabolic partial differential equation with the initial boundary value problem.Using the discrete energy method,we prove the existence,uniqueness and convergence of the difference scheme solution,and the convergence order is o(τ2+h4) in L∞ norm.Finally,a numerical exmple is provided to testify the theoretical results.
作者 池永日
出处 《延边大学学报(自然科学版)》 CAS 2010年第4期287-290,共4页 Journal of Yanbian University(Natural Science Edition)
关键词 延迟抛物偏微分方程 CRANK-NICOLSON差分格式 收敛性 delay parabolic partial differential equations Crank-Nicolson difference scheme convergence
  • 相关文献

参考文献3

二级参考文献13

  • 1Clark C W.A delay-recruitment model of population dynamics,wish an application to baleen whale populations[J].Math Biol,1976,(3):381-391. 被引量:1
  • 2Spirdon A,Kuruklis.The asymptotic stability of xn+1-axn+bxn-k=0[J].J Math Anal Appl,1994,(188):719-713. 被引量:1
  • 3Xie Y Q,Qin G X.The asymptotic stability of a type of difference equation[J].J Hunan Univ,2004,31(4):98-100. 被引量:1
  • 4Zhou Z,Zhang Q Q.Uniform stability of nonlinear difference equation with systems[J].J Math Anal Appl,1998,(225):486-500. 被引量:1
  • 5Hou C M,He Y Q.Stability of nonlinear neutral retarded difference equations[J].J Sys Sci Math Scis,2004,24(2):189-199. 被引量:1
  • 6Zhou Z,Yu J Sh.Stability for nonautonomous neutral delay difference equations[J].Acta math sinice,1999,42(6):1093-1102. 被引量:1
  • 7Chen W H,Guan Z H.Uniform asymptotic stability for perturbed neutral delay differential equations[J].J Math Anal Appl,2004,291(2):578-595. 被引量:1
  • 8LU Jin-fu, GUAN Zhi. Numerical Solution of Partial Differential Equation[M]. Beijing: Qinghua University Press, 2004. 被引量:1
  • 9HU Jan-wei, TANG Huai-ming. Numerical Method of Differential Equation[M]. Beijing: Science Press, 2003. 被引量:1
  • 10CHEN Min, TEMAM R. Nonlinear Galerkin method in the finite difference case and wavelet-like incremental unknowns[J]. Numer Math, 1993, 64: 271-294. 被引量:1

共引文献14

同被引文献13

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部