摘要
对一类带有初边值问题的非线性延迟抛物偏微分方程建立了一个Crank-Nicolson型的线性化差分格式,并用离散能量法证明了该差分格式解的存在性、唯一性和收敛性,该差分格式在L∞范数下的收敛阶数为o(τ2+h4).仿真结果表明,该方法优于文献[3]的算法.
A linearized Crank-Nicolson scheme is estabilished for a class of nonlinear delay parabolic partial differential equation with the initial boundary value problem.Using the discrete energy method,we prove the existence,uniqueness and convergence of the difference scheme solution,and the convergence order is o(τ2+h4) in L∞ norm.Finally,a numerical exmple is provided to testify the theoretical results.
出处
《延边大学学报(自然科学版)》
CAS
2010年第4期287-290,共4页
Journal of Yanbian University(Natural Science Edition)