摘要
通过对四次Lagrange插值多项式求导推导出一阶导数的五点数值微分公式,其截断误差为O(h^4).利用Richardson外推原理得到该公式的外推算法,K次外推后,中间节点的数值精度提高到O(h^(2(k+2))),其它节点的精度提高到O(h^(k+4)).
Abstract: The five-point formulas for one-order derivative are obtained by the interpolation polynomial. The extrapolation methods of formulas are obtained by Richardson Extrapolation Method. After K times extrapolation, the truncation error of the middle point is improved from O(h4) to O(h2(k+2)), the truncation error of the others are improved from O(h4) to O(hk+4)).
出处
《数学的实践与认识》
CSCD
北大核心
2011年第6期163-167,共5页
Mathematics in Practice and Theory
基金
宁夏大学自然科学基金(NDZR10-36)