期刊文献+

一类具有标准发生率的SIRS传染病模型的无病周期解 被引量:1

The Infection-Free Periodic Solutions of an SIRS Epidemic Model with Standard Incidence
下载PDF
导出
摘要 研究了一个具有标准发生率、脉冲生育、脉冲接种和垂直传染的SIRS传染病模型的复杂动力学行为.首先构造了一个庞卡莱映射;然后利用映射的不动点及其特征值,得到了系统无病周期解的存在和稳定性的条件;接着详细讨论了系统从平凡解到无病周期-1解的跨临界分岔现象,以及从无病周期-1解到无病周期-2解的flip分岔现象;最后给出了能很好地验证理论分析的数值结果. The complex dynamics of an SIRS epidemic model with standard incidence, birth pulse, pulse vaccination and vertical transmission was investigated. First, a Poincare map was constructed, the existence and stability of the infection-free periodic solution were obtained with the help of the fixed point of the map and its eigenvalues. Then transcritical bifurcation of the trivial solution and flip bifurcation of the infection-free period-1 solution of this model were discussed in detail. Finally, numerical results, which are in good agreement with the theoretical analysis, are presented.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2013年第4期367-371,共5页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(11162004) 广西省自然科学基金资助项目(2012GXNSFAA053006) 广西省研究生教育创新计划项目(YCSZ2012072)
关键词 SIRS模型 标准发生率 无病周期解 跨临界分岔 flip分岔 SIRS epidemic model standard incidence infection-free periodic solution transcritical bifurcation flip bifurcation
  • 相关文献

参考文献11

二级参考文献29

  • 1张菊平,靳祯.一类具有对数形式的脉冲积分不等式[J].华北工学院学报,2004,25(3):162-165. 被引量:1
  • 2[1]Laksmikantham V,Bainov DD and Simeonov PS.Theory of Impulsive differential equations.Singapore:World Scientific,1989 被引量:1
  • 3[2]Bainov DD and Simeonov PS.Impulsive differential equations:Periodic Solutions and Applications.New York:Longman Scientific and Technical,1993 被引量:1
  • 4[3]Lakmeche A,Arino O.Bifurcation of nontrivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment.Dynamics of Continuous,Discrete and Impulsive System,2000,7:265~287 被引量:1
  • 5[4]Tang SY and Chen LS.Density-dependent birth rate,birth pulses and their population dynamic consequences.Journal of Mathematical Biology,2002,44:185~99 被引量:1
  • 6[5]Guckenheimer J and Holmes P.Nonlinear oscillations,Dynamical Systems,and Bifurcations of Vector Fields.New York:Springer-Verlag,1983 被引量:1
  • 7[6]Kuznetsov YA.Elements of Applied bifurcation theory.New York:Springer-Verlag,1995 被引量:1
  • 8[8]Jiang GR,Lu QS and Qian LN.Complex dynamics of a Holling type II prey-predator system with state feedback control.Chaos,Solitons and Fractals,2007,31:448~461 被引量:1
  • 9[9]Simeonov PS and Bainov DD.Orbital stability of periodic solutions of autonomous systems with impulse effect.International Journal of Systems Science,1988,19:2562~2585 被引量:1
  • 10[10]Rasband SN.Chaotic Dynamics of Nonlinear Systems.New York:John Wiley and Sons,1990 被引量:1

共引文献33

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部