期刊文献+

高效的图像超分辨率重建参数估计算法 被引量:1

Efficient Parameter Estimation Algorithm for Super-resolution Image
下载PDF
导出
摘要 估计正则化参数的有效方法是计算L-曲线的最大曲率,然而在超分辨率图像重建中,计算L-曲线的曲率代价十分昂贵.提出一种基于截断Arnoldi过程的图像超分辨率重建正则化参数估计算法.该方法将超分辨率重建中的系统矩阵进行截断Arnoldi过程的分解,得出简化的Hessenberg矩阵.借助Galerkin方程可将超分辨率重建方程组转化为与Hessenberg矩阵相关的简化方程组,通过Given旋转变换来快速求该方程组的解.给出了计算L曲率的计算公式.该方法能高效得到正则化参数. The valid method of regularized parameter estimation is to compute the maximum curvature of L-curve. However, the com- putation is quite costly for the estimation of the unknown parameter in a super-resolution image reconstruction. The paper proposes an efficient approximate method based on the truncate Arnoldi process. The method can factorize the system matrix in the super-resolu- tion reconstruction into a Hessenberg matrix by the partial Arnoldi process. The linear equations in the super-resolution reconstruction are translated into simple ones associated with Hessenberg matrix through the Galerkin equations. Then the equations can quickly be solved by the Given rotation translations. The formula of L-curve curvature is presented. The computational complexity of the L-cur- vature can be reduced through partial factorization of Arnoldi process. The theory analytics and experiments demonstrate that the method can be valid.
作者 解凯 张芬
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第9期2201-2204,共4页 Journal of Chinese Computer Systems
基金 北京市属高等学校人才强教计划项目(PXM2010_014223_095557)资助 北京市印刷学院重点科研基金项目(E-a-2012-33)资助
关键词 L 曲率 截断Arnoldi过程 参数估计 超分辨率 L-curvature truncate Arnoldi process parameter estimation super-resolution
  • 相关文献

参考文献4

二级参考文献50

  • 1肖亮,吴慧中,韦志辉.面向彩色图像恢复与边缘检测的Mumford-Shah推广模型研究[J].计算机学报,2006,29(2):286-295. 被引量:9
  • 2邵文泽,韦志辉.一种非线性数字滤波器的统一设计框架及其性能分析[J].计算机学报,2007,30(1):91-102. 被引量:10
  • 3韩玉兵,束锋,孙锦涛,吴乐南.基于MG-GMRES算法的图像超分辨率重建[J].计算机学报,2007,30(6):1028-1034. 被引量:5
  • 4PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: A technical overview [ J ]. IEEE Transaction on Signal Processing, 2003, 20 (5) : 21-36. 被引量:1
  • 5ELAD M, FEUER A. Restoration of a single super resolution image from several blurred, noisy, and under sampled measured images [ J ]. IEEE Transaction on Image Processing, 1997,6(12) : 1646-1658. 被引量:1
  • 6SCHULTZ R R, STEVENSON R L. Extraction of high- resolution frames from video sequences[J].IEEE Transaction on Image Processing, 1996,5 (6) : 996-1011. 被引量:1
  • 7HE Y, YAP K H, CHEN L, et al. A nonlinear least square technique for simultaneous image registration and super-resolution [ J ]. IEEE Transaction on Image Processing, 2007, 16(11) : 2830-2841. 被引量:1
  • 8CHUNG J, HABER E, NAGY J. Numerical methods for coupled super resolution [ J ]. Inverse Problem, 2006, 22 (2) : 1261-1272. 被引量:1
  • 9SCHULTZ R R, STEVENSON R L. A Bayesian approach to image expansion for improved definition [ J ]. IEEE Transaction on Image Processing, 1994, 3 ( 5 ) : 233 -242. 被引量:1
  • 10HARDIER C, BARNARD K J, ARMSTRONG E E. Joint MAP registration and high-resolution image estimation using a sequence of under sampled images [ J ]. IEEE Transaction on Image Processing, 1997, 6 ( 12 ) : 1621-1633. 被引量:1

共引文献26

同被引文献14

  • 1浦剑,张军平,黄华.超分辨率算法研究综述[J].山东大学学报(工学版),2009,39(1):27-32. 被引量:35
  • 2Park S, Park M, Kang M. Super-resolution image reconstruction :a technical overview[ J ]. IEEE Signal Processing Magazine,2003, 20(3) :21 -36. 被引量:1
  • 3Farsiu S, Robinson D, Elad M, et al. Advanced and Challenges in Super-Resolution [ J ]. International Journal of Image System and Technology ,2004,14 (2) :47 - 57. 被引量:1
  • 4Tsai R Y,Huang T S. Muhiframe image restoration and registration[J]. Advances in Computer Vision and Image Processing,1984 ( 1 ) :317 - 339. 被引量:1
  • 5Hou H S,Andrews H C. Cubic spline for image interpolation and digital filtering[ J]. IEEE Transaction on Signal Pressing, 1978, 26(6) :508 -517. 被引量:1
  • 6Stark H, Oskoui P. High resolution image recovery from image-plane arrays, using convex projections [ J ]. Journal of the Optical So- ciety of America, 1989,26 ( 6 ) : 508 - 517. 被引量:1
  • 7Irani M, Peleg S. Improving resolution by image registration [ J ]. CVGIP:Graphical Models and Image Processing, 1991,53 (3) :231 -239. 被引量:1
  • 8Nhat N, Milanfar P. A computationally etticient super resolution image reconstruction algorithm [ J ]. IEEE Transaetions on Image Processing,2001,10(4) :573 - 583. 被引量:1
  • 9Freeman W T, Pasztor E C, Carmichael O T. Leanming low-level vision [ J ]. International Journal of Computer Vision, 2000,40 ( 1 ) :25 -47. 被引量:1
  • 10Freeman W T, Jones T R, Pasztor E C. Example based super resolution [ J ]. IEEE Computer Graphics and Application,2002,22 (2) :56 -65. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部