期刊文献+

基于Hessenberg测量矩阵的超声图像重建

Ultrasound imaging reconstruction based on Hessenberg matrix
原文传递
导出
摘要 针对超声图像连续性差、自身具有稀疏性的特点,提出了一种适用于超声图像的压缩感知重建方法。该方法以小波变换为稀疏基,Hessenberg矩阵为测量矩阵,引入正交匹配追踪(OMP)算法实现了超声图像的重建。超声C-扫描图像重建结果表明在观测数据采样率降低、数据缺失等条件下均能清晰的成像,验证了该方法的有效性。此外,本文给出Hessenberg测量矩阵的有限等距性(RIP)性质证明;并与基于Toeplitz测量矩阵的图像重建方法进行了比较,实验结果表明利用本文方法的重建图像在平均结构相似度(SSIM)、峰值信噪比(PSNR)和三维差值图等指标上均较优。该压缩感知重建方法在采样率为50%,原始数据较差的前提下,成功恢复出相似度在80%以上的超声图像。 This paper proposes a compressed sensing method for the reconstruction of the properties of gray level discontinuity and sparsity inherent in ultrasound images. The wavelet transform is based on a sparse transform,and a Hessenberg matrix is regarded as the measurement matrix in this method. Finally the orthogonal matching pursuit( OMP) algorithm is used to reconstruct the ultrasound image. The experimental results shows that good ultrasound C-scan images can be reconstructed even under the conditions of decreasing data sampling rate or missing observation data and the proposed method is effective. In addition,we present a simple proof of the restricted isometry property( RIP) of a Hessenberg matrix. Comparison of ultrasound reconstructed image reconstruction using Toeplitz matrix and Hessenberg matrix testify that the reconstructed ultrasound images using the proposed method have good structural similarity( SSIM),high peak signal to noise ratio( PSNR) and three dimensional error imaging,three commonly used indicators for evaluating image quality. Our method successfully recovers the ultrasonic image similarity in more than 80% of case for a sampling ratio of 50%.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期106-111,共6页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(61473025) 北京市优秀人才培养计划(2012B009016000004) 北京化工大学"可视媒体计算"交叉学科项目
关键词 图像处理 Hessenberg测量矩阵 压缩感知 图像重构 image processing Hessenberg measurement matrix compressed sensing image reconstruction
  • 相关文献

参考文献8

  • 1Suhyung Park,Jaeseok Park.Compressed sensing MRI exploiting complementary dual decomposition[J]. Medical Image Analysis . 2014 被引量:1
  • 2Jingang Deng,Qimei Cui,Xuefei Zhang.Data Pre-Processing in Compressive Sensing Based Indoor Fingerprinting Positioning[J]. International Journal of Wireless Information Networks . 2013 (4) 被引量:1
  • 3Ronald A. DeVore.Deterministic constructions of compressed sensing matrices[J]. Journal of Complexity . 2007 (4) 被引量:1
  • 4Bajwa W,Haupt J,Paz G,etal.Toeplitz-structured compressed sensing matrices. IEEE/SP14thWorkshop on Statistical Signal Processing . 2007 被引量:1
  • 5WANG Kai,LIU Yu-lin,ZHANG Jian-xin.RIP analysis forquasi-Toeplitz CS matrices. 2010 International Con-ference on Future Information Technology and Manage-ment Engineering(FITME) . 2010 被引量:1
  • 6Wang R,Yu S,Du L,et al.Performance analysis on greedy reconstruction algorithms for audio signals based on compressed sensing. Journal of Information and Computational Science . 2013 被引量:1
  • 7TROPP J A;GILBERT A C.Signal recovery from random measurements via orthogonal matching pursuit,2007(12). 被引量:7
  • 8Whitelonis N,Ling H.High-resolution radar imaging through a pipe via music and compressed sensing. IEEE Transactions on Antennas and Propagation . 2013 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部