期刊文献+

马尔可夫模型与Shearlet变换结合的SAR图像超分辨率复原方法 被引量:1

SAR Image Hallucination Based on Markov Model and Shearlet Transform
下载PDF
导出
摘要 为了不改变成像硬件条件,通过软件方法提高SAR图像分辨率,提出一种马尔可夫随机场(MRF)模型和Shearlet变换相结合的超分辨率复原方法。该方法分为两个过程,训练过程和学习过程。在训练过程中,首先对训练库中的高、低分辨率图像进行Shearlet变换,提取不同方向、不同分辨率的中、高频信息,然后对不同方向的中、高频信息进行分块。在学习过程中,使用Shearlet变换提取待复原图像的中频信息并对其分块,然后在训练库的辅助下,使用MRF建立图像特征模型,最后通过最大后验概率(MAP)估计出各个方向的高频信息,将估计出的高频信息和待复原的低分辨率图像叠加到一起进行Shearlet反变换,最终获得高分辨率图像。通过对真实SAR图像的处理结果表明,无论是主观的视觉效果还是客观的指标上,本文提出的方法都取得较好的结果,优于传统插值方法以及目前最新的基于稀疏表示的超分辨率方法。 To enhance the resolution of SAR image,based on Markov model and Shearlet transform,a learning based super-resolution algorithm was proposed.The proposed method consisted of two stages of training stage and learning stage.In the training stage,firstly,Shearlet transform was performed to high-resolution and low-resolution images in the training set to obtain high-frequency and mid-frequency information of different directions.Then these high-frequency and mid-frequency information were divided into blocks.In the learning stage,Shearlet transform was performed to extract the mid-frequency information of a low-resolution image.Then,Markov network was adopted to model the super resolved high-resolution image with the blocks obtained in the training stage.Maximum A Posteriori(MAP)was used to estimate the high-frequency information of the low-resolution image in different directions.The estimated high-frequency information and the low-resolution image were transformed into super resolved high-resolution image through inverse Shearlet transformation.Experimental results on SAR images showed that the results of the algorithm have a good performance in terms of visual effects and root mean square error.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2012年第5期101-108,共8页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(61071161)
关键词 SHEARLET变换 马尔可夫随机场模型 基于学习的超分辨率 SAR图像 Shearlet MRF learning-based super-resolution SAR image
  • 相关文献

参考文献21

  • 1Ouwerkerk J D. Image super-resolution survey [ J ]. Image and Vision Computing,2006,24(10) : 1039 - 1052. 被引量:1
  • 2Park S, Park M, Kang M. Super-resolution image reconstruc- tion:a technical overview[ J]. IEEE Signal Processing Magazine,2003,20(3 ) :21 - 36. 被引量:1
  • 3Cape1 D,Zisserman A. Computer vision applied to super resolution[ J ]. IEEE Signal ProcessingMagazine, 2003 ( 5 ) : 75 - 86. 被引量:1
  • 4郑丽贤,何小海,吴炜,杨晓敏,陈默.基于学习的超分辨率技术[J].计算机工程,2008,34(5):193-195. 被引量:18
  • 5Tsai R, Huang T S. Multiframe image restoration and registration[ M ]//Advances in CVIP: Image reconstruction from incomplete observations. Greenwich, England, 1984 : 317 - 339. 被引量:1
  • 6Schultz R, Stevenson R. Extraction of high resolution frames from video sequences[J]. IEEE Transactions on Image Processing, 1996,5 (6) :996 - 1011. 被引量:1
  • 7杨欣,费树岷,周大可.基于MAP的自适应图像配准及超分辨率重建[J].仪器仪表学报,2011,32(8):1771-1775. 被引量:19
  • 8Baker S, Kanade T. Limits on super-resolution and how to break them[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2002,24(9 ) : 1167 - 1183. 被引量:1
  • 9Su C, Zhuang Y, Huang L. Steerable pyramid based face hal- lucination [ J ]. Pattern Recognition, 2005,38 ( 6 ) : 813 - 824. 被引量:1
  • 10Freeman W, Jones T, Pasztor E. Example-based superreso- lution [ J ]. IEEE Computer Graphics and Applications, 2002,22(2) :56 -65. 被引量:1

二级参考文献39

  • 1PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: A technical overview [ J ]. IEEE Transaction on Signal Processing, 2003, 20 (5) : 21-36. 被引量:1
  • 2ELAD M, FEUER A. Restoration of a single super resolution image from several blurred, noisy, and under sampled measured images [ J ]. IEEE Transaction on Image Processing, 1997,6(12) : 1646-1658. 被引量:1
  • 3SCHULTZ R R, STEVENSON R L. Extraction of high- resolution frames from video sequences[J].IEEE Transaction on Image Processing, 1996,5 (6) : 996-1011. 被引量:1
  • 4HE Y, YAP K H, CHEN L, et al. A nonlinear least square technique for simultaneous image registration and super-resolution [ J ]. IEEE Transaction on Image Processing, 2007, 16(11) : 2830-2841. 被引量:1
  • 5CHUNG J, HABER E, NAGY J. Numerical methods for coupled super resolution [ J ]. Inverse Problem, 2006, 22 (2) : 1261-1272. 被引量:1
  • 6SCHULTZ R R, STEVENSON R L. A Bayesian approach to image expansion for improved definition [ J ]. IEEE Transaction on Image Processing, 1994, 3 ( 5 ) : 233 -242. 被引量:1
  • 7HARDIER C, BARNARD K J, ARMSTRONG E E. Joint MAP registration and high-resolution image estimation using a sequence of under sampled images [ J ]. IEEE Transaction on Image Processing, 1997, 6 ( 12 ) : 1621-1633. 被引量:1
  • 8VANDEWALLE P, SBAIZ L, VANDEWALLE J, et al. Super-resolution from unregistered and totally aliased signals using subspace methods [ J ]. IEEE Transaction on Signal Processing, 2007, 55 (7) : 3687-3703. 被引量:1
  • 9NG M K, KOO J, BOSE N K. Constrained total leastsquares computations for high-resolution image recon- struction with multi-sensors[J].Journal of Imaging Science and Technology, 2002,12( 1 ) : 35-42. 被引量:1
  • 10Chen J Y, Reed I S . A detection algorithm for optical targets in clutter[ J]. IEEE Trans. on Aerospace and Electronic Systems, 1987,23 ( 1 ) :46-59. 被引量:1

共引文献57

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部