期刊文献+

混合MFCC特征参数应用于语音情感识别 被引量:19

Speech Emotion Recognition Based on Mixed MFCC Characteristic Parameter
下载PDF
导出
摘要 引入两种新的特征参数Mid-MFCC和IMFCC,采用MFCC、Mid-MFCC和IMFCC相结合的改进算法,解决MFCC特征参数在语音识别中对中、高频信号的识别精度不高的特点,并使用增减分量法计算MFCC、Mid-MFCC和IMFCC各阶倒谱分量对语音情感识别的贡献,提取3个特征参数贡献最高的几阶倒谱分量组成了新的特征参数;实验结果表明,在相同环境下新的特征参数比经典MFCC特征参数的语音情感的识别率稍高。 This paper introduced two new characteristic parameters Mid-- MFCC and IMFCC combining with MFCC to improve the algo- rithm which solve the problem that MFCC characteristic parameter in speech recognition has low identification accuracy when signal is inter- mediate, high frequency signal, calculating the contribution that MFCC, Mid--MFCC and !MFCC each order cepstrum component was used in speech emotion recognition with increase or decrease component method, extracting highest contribution of several number order cepstrum component from three characteristic parameters and forming a new characteristic parameter. The experiment results show that new character- istic parameter has higher recognition rate than classic MFCC characteristic parameter in speech emotion recognition under the same environ- ment.
出处 《计算机测量与控制》 北大核心 2013年第7期1966-1968,1986,共4页 Computer Measurement &Control
基金 国家自然科学基金资助项目(60961002) 广西自然科学基金资助项目(2012GXNSFAA053221)
关键词 Mel频率倒谱系数(MFCC) 增减分量法 特征提取 MFCC increase or decrease component method feature extraction
  • 相关文献

参考文献6

二级参考文献15

  • 1蒋丹宁,蔡莲红.基于语音声学特征的情感信息识别[J].清华大学学报(自然科学版),2006,46(1):86-89. 被引量:38
  • 2杨行峻 迟惠生.数字语音信号处理[M].北京:电子工业出版社,1995.. 被引量:2
  • 3[1]DAVIS S B,MERMELSTEIN P.Comparison of parametric representations of monosyllabic word recognition in continuously spoken sentences[J].IEEE Transactions on Speech Acoustic Processing,1980,28:357-366. 被引量:1
  • 4[3]PAOT L,CHEN Y T,YEH J H,et al.Emotion Recognition and Evaluation of Mandarin Speech Using Weighted D-KNN Classification[EB/OL].(2005-03-10)[2008-02-10] http://www.actapress.com/Paperlnfo.aspx? PaperID=27854reasor=500. 被引量:1
  • 5[4]YEN T N,BASS I,Li M K,et al.Investigation of Combining SVM and Decision Tree for Emotion Classification.[EB/OL].(2005-10-20)[2008-02-10] http://pertal.acm.org/citation.cfm? id=1106780.1107199cou=dl=ACM. 被引量:1
  • 6[5]CHAKROBORTY S,ROY A,MAJUMDAR S,et al.Capturing Complementary Information via Reversed Filter Bank and Parallel Implementation with MFCC for Improved Text-Independent Speaker Identification[EB/OL].(2007-04-12)[2008-02-10]http://portal.acm.org/citation.cfm? id=1260199.1260281. 被引量:1
  • 7ZAJDEL W,KRIJNDERS J D,ANDRINGA T,et al.CASSANDRA:Audio-video sensor fusion for aggression detection[C]// Proceedings of the 2007 IEEE International Conference on Advanced Video and Signal based Surveillanace.London:IEEE Computer Society,2007:200-205. 被引量:1
  • 8RABAOUI A,DAVY M,ROSSIGNOL S,et al.Using one-class SVMs and wavelets for audio surveillance[J].IEEE Transactions on Information Forensics and Security,2008,3(4):763-775. 被引量:1
  • 9RABAOUI A,LACHIRI Z,ELLOUZE N.Using HMM-based classifier adapted to background noises with improved sounds features for audio surveillance application[J].International Journal of Signal Processing,2008,5(1):46-55. 被引量:1
  • 10RADHAKRISHNAN R,DIVAKARAN A,SMARAGDIS A.Audio analysis for surveillance applications[C]// Proceedings of the 2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.Washington,DC:IEEE Computer Society,2005:158-161. 被引量:1

共引文献120

同被引文献147

引证文献19

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部