期刊文献+

基于HMM和RNN的无人机语音控制方案与仿真研究 被引量:12

Speech Control Scheme Design and Simulation for UAV Based on HMM and RNN
下载PDF
导出
摘要 为简化无人机操作,避免误操作,设计了一套基于隐马尔可夫模型(Hidden Markov Model,HMM)和循环神经网络(Recurrent Neural Networks,RNN)的无人机语音控制方案。该方案采用HMM识别无人机语音指令;同时采用RNN对多套无人机操作指令串进行训练,并对当前时刻指令进行预测,通过计算二者的相关性判断是否执行。仿真结果表明,该方案对HMM识别错误指令的辨别率达到61.90%,使整体错误率降至1.43%,表明该方案具有较为优异的性能。 In order to simplify the operation and avoid the misoperation of UAVs,Based on Hidden Markov Model and Recurrent Neural Networks,a speech control scheme for UAVs is designed.In this scheme,HMM is used to train and recognize the speech command samples of UAVs.HMM is used to pick out the error commands,RNN is used to train the sets of UAVs commands,and the next command based on the training result is predicted.It is determined whether to execute or not by calculating the correlation between commands recognized by HMM and predicted by RNN.The simulation results show the recognition rate of wrong command is as high as 61.90%,and the overall error rate is down to 1.43%.All show the excellent performance of this scheme.
作者 周楠 艾剑良 Zhou Nan;Ai Jianliang(Department of Aeronautics and Astronautics,Fudan University,Shanghai 200433,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2020年第3期464-471,共8页 Journal of System Simulation
关键词 无人机 语音控制 隐马尔可夫模型 循环神经网络 UAVs(Unmanned Aerial Vehicles) speech control HMM(Hidden Markov Model) RNN(Recurrent Neural Networks)
  • 相关文献

参考文献10

二级参考文献14

  • 1李国锋.低信噪比下的语音增强处理[J].应用声学,1995,14(5):13-16. 被引量:2
  • 2Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model [J]. Journal of Machine Learning Research, 2003, 3(2): 1137-1155. 被引量:1
  • 3Mikolov T, Kopecky J, Burger L, et al. Neural network based language models for highly inflective languages [C] // Proc of the 34th IEEE Int Conf on Acoustics, Speech and Signal. Piseataway, NJ: IEEE, 2009:4725-4728. 被引量:1
  • 4Boulanger-Lewandowski N, Bengio Y, Vincent P. Modeling temporal dependencies in high-dimensional sequences Application to polyphonic music generation and transcription [C] //Proc of the 29th Int Conf on Machine Learning. New York: ACM, 2012:590-598. 被引量:1
  • 5Bottou L. Stochastic gradient learning in neural networks [C] //Proc of Neuro Nimes 91, Nimes: EC2, 1991: 687-699. 被引量:1
  • 6Bengio Y, Frasconi P, Simard P. The problem of learning long-term dependencies in recurrent networks [C] //Proc of IEEE Int Conf on Neural Networks. Piscataway, NJ: IEEE, 1993: 1183-1188. 被引量:1
  • 7Xu W, Rundieky A. Can artificial neural networks learn language models? [C] //Proc of the 6th Int Conf on Spoken I,anguage Processing. Beijing, China: ISCA, 2000. 被引量:1
  • 8Bengio Y, Simard P, Fraseoni P. Learning long-term dependencies with gradient descent is difficult [C]//Proe of IEEE Trans on Neural Networks. Piseataway, NJ: IEEE, 1994:157-166. 被引量:1
  • 9Mikolov T, Kombrink S, Deoras A, el al. RNNLM- Recurrent neural network language modeling toolkit [C] // Proc of IEEE Workshop on Automatic Speech Recognition and Understanding. Piscataway, NJ: IEEE, 2011: 5528- 5531. 被引量:1
  • 10李桦,安钢,樊新海.短时能频值在语音端点检测中的应用[J].测试技术学报,1999,13(1):21-27. 被引量:6

共引文献63

同被引文献77

引证文献12

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部