期刊文献+

改进FOA算法在语音信号盲分离中的应用 被引量:20

Application of improved FOA on audio signal blind separation
下载PDF
导出
摘要 简要介绍了果蝇优化算法的基本理论,针对FastICA等算法的稳定性和收敛性不够,而粒子群优化的盲分离运算速度慢的问题,将改进的果蝇优化算法应用到盲源分离研究中,提出了一种基于改进的果蝇优化的盲源分离算法。算法以信号的规范四阶累积量为代价函数,以改进果蝇算法对代价函数求极值,逐一确定分离向量,完成对线性瞬时混合语音信号的分离。仿真结果表明,算法能够有效实现对各混合语音信号的有序盲分离,且分离顺序能够确保按照源信号的规范四阶累积量绝对值的降序进行,分离精度也有一定的提高。 The basic theory of Fruit Fly Optimization Algorithm (FOA) is introduced. According to the stability and Conver- gence of FastlCA is not enough, and the Blind Source Separation (BSS) of particle swarm optimization is not fast enough, the improved fruit fly optimization algorithm is being applied in researching of BSS, and a new BSS algorithm is proposed. The ab- solute value of normalized fourth-order cumulant is used in the algorithm as cost function and the improved Fruit Fly Optimiza- tion Algorithm is used to optimize the cost function. One by one to determine the separation vector and the instantaneous linear mixed blind source audio signal could be separated in sequence. In the meantime, the simulation results show that the algorithm can achieve the efficient sequential blind separation for source signal and ensure the separation order according to the descend- ing absolute value of normalized fourth-order cumulant, and has higher separation accuracy.
作者 肖正安
出处 《计算机工程与应用》 CSCD 2013年第16期201-204,231,共5页 Computer Engineering and Applications
关键词 盲分离 果蝇优化 规范四阶累积量 blind source separation Fruit Fly Optimization Algorithm normalized fourth-order cumulant
  • 相关文献

参考文献8

二级参考文献28

  • 1傅予力,沈轶,谢胜利.基于规范高阶累积量的盲分离算法[J].应用数学,2006,19(4):869-876. 被引量:8
  • 2Cichocki A,Thawonmas R,Amari S. Sequential blind signal extraction in order specified by stochastic proper- ties [J]. Electronics Letters, 1997,33 (1) : 64-65. 被引量:1
  • 3Kennedy J, Eberhart R C. Particle swarm optimiza- tion [C]// Proceedings of IEEE International Conference on Neural Networks. Perth,Australia, 1995 : 1942-1948. 被引量:1
  • 4Shi Y H,Eberhart R C. A modified particle swarm opti- mizer[C]// IEEE World Congress on Computational In- telligence. Anchorage,Alaska, 1998 -69-73. 被引量:1
  • 5Park Hyung-Min,Oh Sang-Hoon,Lee Soo-Young. A modified infomax algorithm for blind signal separa-tion[J]. Neurocomputing,2006,70 (1/2/3) :229-240. 被引量:1
  • 6Guo Liangfeng,Garland M. The use of entropy minimi- zation for the solution of blind source separation prob- lems in image analysis[J]. Pattern Recognition,2006, 6 (39) : 1066-1073. 被引量:1
  • 7Tichavsky P,Koldovsky Z,Yeredor A,et al. A hybrid technique for blind separation of non-gaussian and time- correlated sources using a multicomponent approach[J]. IEEE Trans on Neural Networks ,2008,19 (3) :421-430. 被引量:1
  • 8Sun T Y ,Liu C C,Hsieh S T,et al. Blind separation with unknown number of sources based on auto-trimmed neu- ral network[J]. Neurocomputing,2008,71 (10/11/12): 2271-2280. 被引量:1
  • 9张筑生.数学分析新讲(第二册)[M].北京:北京大学出版社,2000. 被引量:1
  • 10Comon P. Independent Component Analysis, A New Concept. Signal Processing, 1994,36:287-314. 被引量:1

共引文献63

同被引文献151

引证文献20

二级引证文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部