期刊文献+

基于果蝇优化算法的模拟滤波器设计 被引量:5

Design of Analog Filter Based on Fruit Fly Optimization Algorithm
下载PDF
导出
摘要 基于粒子群优化算法的无源模拟滤波器优化设计方法容易陷入局部最优,收敛速度慢迭代次数多、运算量大且稳定性不够好。提出果蝇优化算法对滤波器的整个参数空间进行高效并行搜索直到获得最优的参数值,实例仿真表明,采用该方法设计的滤波器在相同的带宽准确度及阻带衰减的情况下,具有更快的运算速度及收敛性能。 The optimum design of passive simulation filters based on Particle Swarm Optimization algorithm has slow convergence velocity and may easily fall into local optimum,more iterative times,large computational complexity,and stability is not good enough.A passive analog filter optimization design method is proposed based on the Fruit Fly Optimization Algorithm(FOA),and it optimizes the circuit's parameters in the whole parameters space effectively and globally by FOA until gain the best parameters.The simulation results on the MATLAB show that our algorithm has global convergence and higher speed of optimization.
作者 肖正安
出处 《湖北第二师范学院学报》 2012年第2期26-29,共4页 Journal of Hubei University of Education
关键词 滤波器 粒子群优化 果蝇优化 filter Particle Swarm Optimization(PSO) Fruit Fly Optimization Algorithm
  • 相关文献

参考文献3

二级参考文献23

  • 1王大寿,赵涛.LC滤波器的小型化制作与生产[J].大连海运学院学报,1994,20(4):61-67. 被引量:7
  • 2KENNEDY J E, EBERHART R C. Particle swarm optimization [A ]. Proceedings of the IEEE International Conference on Neural Networks[C]. Perth, Australia:IEEE Press, 1995. 1942 - 1948. 被引量:1
  • 3Ali M M, KAELO P. Improved particle swarm algorithms for global optimization[ J]. Applied Mathematics and Computation, 2008,196:578 - 593. 被引量:1
  • 4HENDTLASS T. A combined swarm differential evolution algorithm for optimization problems[ A]. Lecture Notes in Computer Science[ C]. Berlin: Springer, 2001.11 - 18. 被引量:1
  • 5SHI Y, EBERHART R C. Modified particle swarm optimizer [A]. Proceeding of the IEEE International Conference on Evolutionary Computation[C ]. Piscataway NJ: IEEE Press, 1998. 69 - 73. 被引量:1
  • 6SHI Y, EBERHART R C. Parameter selection in particle swarm optimization[ A]. Evolutionary Programming Ⅶ, Lecture Notes in Computer Science[ C ]. Berlin: Springer, 1998.591 - 600. 被引量:1
  • 7LIU B,Wang L, JIN Y H,TANG F, HUANG D X. Improved particle swarm optimization combined with chaos[ J]. Chaos, Solitons and Fractals,2005,25 : 1261 - 1271. 被引量:1
  • 8SHI X H,LIANG Y C,LEE H P,LU C,WANG L M.An improved GA and a novle PSO-GA Hybrid algorithm[ J]. Informaton Processing Letters,2005,93:255- 261. 被引量:1
  • 9DA Y,XINRUN G.An improved PSO-based ANN with simulated annealing technique[ J]. Neurocornputing, 2005,63 : 527 - 533. 被引量:1
  • 10FOURIE P C, GROENWOLD A A. The particle swarm optimization algorithm in size and shape optimization[ J]. Structural and Multidisciplinary Optimization,2002,23(4) :259 - 267. 被引量:1

共引文献48

同被引文献56

引证文献5

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部