期刊文献+

基于SVM的并行网络流量分类方法 被引量:7

Parallel network traffic classification method based on SVM
下载PDF
导出
摘要 针对SVM(support vector machine)算法应用到大规模网络流量分类中存在计算复杂度高、训练速度慢等问题,提出一种基于云计算平台进行并行网络流量分类的SVM方法,以提高对大数据集的分类训练速度。该方法是一种采用云计算平台构建多级SVM和映射规约(MapReduce)模型的方法。它将训练数据集划分为多个子训练数据集,通过对所有子训练数据集进行并行训练,得到支持向量集,进而训练出流量分类模型。实验结果表明,与传统的SVM方法相比,并行SVM网络流量分类方法在保持较高分类精度的前提下,有效地减少了训练时间,提高了大规模网络流量分类的速度。 In order to solve high complexity and slow training speed of SVM(support vector machine) algorithm on large network classification dataset,a parallel SVM network traffic classification method is presented,which is based on cloud computing platform to improve the training speed of SVM algorithm on large dataset.This method uses cloud computing platform to build multistage SVM and MapReduce model.The dataset is splited into some sub-datasets,and then trains the sub-datasets parallel to get support vectors set for traffic classification model.Compared with traditional SVM algorithms,experimental results show that parallel SVM network traffic classification method maintains high classification accuracy,reduces training time effectively and improves the speed of classification for large scale of network traffic data.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第8期2646-2650,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61163058) 广西自然科学基金项目(2011GXNSFB018076)
关键词 网络流量分类 支持向量机 并行 映射规约 云计算 network traffic classification support vector machine parallel MapReduce cloud computing
  • 相关文献

参考文献6

二级参考文献58

  • 1王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12):68-71. 被引量:64
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 3刘琼,徐鹏,杨海涛,彭芸.Peer-to-Peer文件共享系统的测量研究[J].软件学报,2006,17(10):2131-2140. 被引量:36
  • 4Madhukar A, Williamson C. A longitudinal study of P2P traffic classification [C]//Proc of the 14th IEEE Int Syrup on Modeling, Analysis, and Simulation. Washington, DC IEEE Computer Society, 2006:179-188 被引量:1
  • 5Moore A W, Papagiannaki K. Toward the accurate identification of network applications [G]//Dovrolis C. LNCS 3431: Proc of the PAM 2005. Heidelberg: Springer, 2005:41-54 被引量:1
  • 6Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark [C]//Proc of ACM SIGCOMM. New York: ACM, 2005.. 229-240 被引量:1
  • 7Roughan M, Sen S, Spatscheck O, et al. Class of service mapping for QoS: A statistical signature-hased approach to IP traffic classification [C]//Proc of ACM SIGCOMM Internet Measurement Conf 2004. New York: ACM, 2004: 135-148 被引量:1
  • 8Zuev D. Moore A W. Traffic classification using a statistical approach [G]//Dovrolis C. LNCS 3431: Proc of the PAM. Heidelberg, Germany: Springer, 2005:321-324 被引量:1
  • 9Moore A W, Zuev D. Internet traffic classification using Bayesian analysis techniques [C] //Proc of the 2005 ACM SIGMETRICS Int Conf on Measurement and Modeling of Computer Systems. New York: ACM, 2005: 50-60 被引量:1
  • 10Tan P N, Steinbach M, Kumar V. Introduction to Data Mining [M]. Boston: Addison Wesley, 2006 被引量:1

共引文献84

同被引文献41

  • 1穆祥昆,王劲松,薛羽丰,黄玮.基于活跃熵的网络异常流量检测方法[J].通信学报,2013,34(S2):51-57. 被引量:20
  • 2刘玉琴,赖院根,雷孝平.基于IPC知识结构的专利自动分类模型[J].小型微型计算机系统,2007,28(12):2295-2298. 被引量:14
  • 3Schumpeter Joseph A. The Theory of Economic Development [M]. Cambridge. MA: Harvard University Press, 1912. 被引量:1
  • 4Wang Gangfeng, Tian Xitian, Geng Junhao. Optimal Selection Method of Process Patents for Technology Transfer Using Fuzzy Linguistic Computing [J]. Mathematical Problems in Engineering, 2014(2014):!-10. 被引量:1
  • 5He Cong , Loh Han Tong. Grouping of TRIZ Inventive Principles to Facilitate Automatic Patent Classification J]. Expert Systems with Applications, 2008, 34 ( 1 ): 788-795. 被引量:1
  • 6He Cong, Loh Han Tong. Pattern-oriented Associative Rule- based Patent Classification [J]. Expert Systems with Applications, 2010, 37 (3): 2395-2404. 被引量:1
  • 7Li Z, Tate D, Lane C, et al. A Framework for Automatic TRIZ Level of Invention Estimation of Patents Using Natural Language Processing, Knowledge-transfer and Patent Citation Metrics [J]. Computer-aided Design, 2012, 44 (10): 987- 1010. 被引量:1
  • 8Chen Y L, Chang Y C. A Three-phase Method for Patent Classification [J]. Information Processing & Management, 2012, 48(6): 1017-1030. 被引量:1
  • 9Porter Martin F. An Algorithm for Suffix Stripping [J]. Program, 1980, 14 (3): 130-137. 被引量:1
  • 10李宗林,胡光岷,周汝强.基于层叠模型的网络流量异常检测方法[J].计算机应用研究,2008,25(9):2839-2841. 被引量:1

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部