期刊文献+

网络流量分类算法比较研究 被引量:1

Comparison Research on the Algorithms of Network Traffic Classification
下载PDF
导出
摘要 准确的网络流量分类既是众多网络研究工作的重要基础,也是网络测量领域的研究热点。基于流特征的六种分类算法进行比较分析,实验结果表明,使用特征选择方法,SVM算法具有较高的整体准确率和较好的计算性能,适合用于网络流量分类。 Accurate traffic classification is of fundamental importance to numerous network activities and it has been a hot topic in net- work measurement for a long time. A comparison of six algorithms of traffic classification based on flow features is conducted. Analysis and experiment show that using feature seletion method the support vector machine(SVM) method has high accuracy and better computational performance for network traffic classification.
作者 彭勃
出处 《计算机与数字工程》 2012年第5期12-14,共3页 Computer & Digital Engineering
基金 安徽医科大学科研基金项目(编号:2010xkj040)资助
关键词 网络流量分类 机器学习 特征选择 network traffic classification, machine learning, feature selection
  • 相关文献

参考文献12

  • 1Moore A W,Papagiannaki K. Toward the Accurate Identifica tion of Network Applications[C]//Dovrolis C. Proceedings of the Sixth PAM. Heidelberg: Springer, 2005 : 41-54. 被引量:1
  • 2MooreAW, Zuev D. Internet Traffic Classification Using Bayesian Analysis Techniques[C]//Proceedings of ACM Int ' 1 Conf. on Measurement and Modeling of Computer Systems (SIGMETRICS). NewYork: ACM, 2005 : 50-60. 被引量:1
  • 3Yu L, Liu H. Feature Selection for High-Dimensional Data= A Fast Correlation-Based Filter Solution[C] // Proceedings of the Twentieth International Conference on Machine Learning, 2003,1-8. 被引量:1
  • 4John G H, Langley P. Estimating Continuous Distributions in Bayesian Classifiers[C]// Proceedings of 11th Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufman, 1995 : 338-345. 被引量:1
  • 5Bouckaert R. Bayesian Network Classifiers inWeka. [EB/OL]. (2008-5-12)2011-3-25. http://www, cs. waikato, ac. nz/ remco/weka, bn. pdf. 被引量:1
  • 6徐鹏,林森.基于C4.5决策树的流量分类方法[J].软件学报,2009,20(10):2692-2704. 被引量:170
  • 7Cover T M, Hart P E. Nearest Neighbor Pattern Classification [J]. IEEE Transactions on Information Theory, 1967, 13 (1) 21-27. 被引量:1
  • 8Auld T,Moore A W, Gull S F. Bayesian Neural Networks for Internet Traffic Classification[J]. IEEE Transactions on Neural Networks, 2007,18(1):223-239. 被引量:1
  • 9张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2268
  • 10Waikato Environment for Knowledge Analysis (WEKA) 3.6,[EB/OL]. [2011-01-17] http://www, es. waikato, ae. nz/ml/ weak/index, html. 被引量:1

二级参考文献34

  • 1孙雷,王新.一种基于遗传操作和类内类间距离判据理论的特征选择方法[J].计算机工程与应用,2004,40(21):178-181. 被引量:8
  • 2Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques. In: Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, 2005. 50-60. http://www.cl.cam.ac.uk/-awm22 /publications/moore2005internet.pdf. 被引量:1
  • 3Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. In: Proc. of the 14th IEEE Int'l Syrup. on Modeling, Analysis, and Simulation. Monterey, 2006. http://ieeexplore.ieee.org/xpl/ffeeabs_all.jsp?arnumber=1698549. 被引量:1
  • 4Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005.41-54. 被引量:1
  • 5Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM. Philadelphia, 2005. 229-240. http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf. 被引量:1
  • 6Roughan M, Sen S, Spatscheck O, Dutfield N. Class-of-Service mapping for QoS: A statistical signature-based approach to IP traffic classification. In: Proc. of the ACM SIGCOMM Internet Measurement Conf. Taormina, 2004. 135-148. http://www.imconf.net/imc-2004/papers/p 135-roughan.pdf. 被引量:1
  • 7Zuev D, Moore AW. Traffic classification using a statistical approach. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005. 321-324. 被引量:1
  • 8Nguyen T, Armitage G. Training on multiple sub-flows to optimise the use of Machine Learning classifiers in real-world IP networks. In: Proc. of the 31 st IEEE LCN 2006. Tampa, 2006. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4116573. 被引量:1
  • 9Eerman J, Mahanti A, Arlitt M. Internct traffic identification using machine learning techniques. In: Proc. of the 49th IEEE GLOBECOM. San Francisco, 2006. http://pages.cpsc.ucalgary.ca/-mahanti/papers/globecom06.pdf. 被引量:1
  • 10Erman J, Arlitt M, Mahanti A. Traffic classification using clustering algorithms. In: Proc. of the ACM SIGCOMM Workshop on Mining Network Data (MineNet). Pisa, 2006. http://conferences.sigcomm.org/sigcomm/2006/papers/minenet-01.pdf. 被引量:1

共引文献2435

同被引文献5

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部