期刊文献+

Research of the traffic characteristics for the real time online traffic classification 被引量:5

Research of the traffic characteristics for the real time online traffic classification
原文传递
导出
摘要 Aiming at the hysteretic characteristics of classification problem existed in current intemet traffic identification field, this paper investigates the traffic characteristic suitable for the on-line traffic classification, such as quality of service (QoS). By the theoretical analysis and the experimental observation, two characteristics (the ACK-Len ab and ACK-Len ha) were obtained. They are the data volume which first be sent by the communication parties continuously. For these two characteristics only depend on data's total length of the first few packets on the flow, network traffic can be classified in the early time when the flow arrived. The experiment based on decision tree C4.5 algorithm, with above 97% accuracy. The result indicated that the characteristics proposed can commendably reflect behavior patterns of the network application, although they are simple. Aiming at the hysteretic characteristics of classification problem existed in current intemet traffic identification field, this paper investigates the traffic characteristic suitable for the on-line traffic classification, such as quality of service (QoS). By the theoretical analysis and the experimental observation, two characteristics (the ACK-Len ab and ACK-Len ha) were obtained. They are the data volume which first be sent by the communication parties continuously. For these two characteristics only depend on data's total length of the first few packets on the flow, network traffic can be classified in the early time when the flow arrived. The experiment based on decision tree C4.5 algorithm, with above 97% accuracy. The result indicated that the characteristics proposed can commendably reflect behavior patterns of the network application, although they are simple.
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2011年第3期92-98,共7页 中国邮电高校学报(英文版)
基金 supported by the National Natural Science Foundation of China (60903130)
关键词 on-line traffic classification traffic characteristics ACK-Len ab ACK-Len ba on-line traffic classification, traffic characteristics, ACK-Len ab, ACK-Len ba
  • 相关文献

参考文献3

二级参考文献47

  • 1Chou S C. Network behavior analysis and performance evaluation of peer-to-peer application. Taipei, China: National Taiwan University, 2004 (in Chinese) 被引量:1
  • 2Karagiannis T, Broido A, Faloutsos M, et al. Transport layer identification of P2P traffic. 2004 ACM SIGCOMM Internet Measurement Conference (IMC 2004), Oct 25-27, 2004, Taormina, Sicily, Italy. 2004:121-134 被引量:1
  • 3Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. Proceedings of ACM SIGCOMM. Aug 22-26, 2005, Philadelphia, PA, USA. 2005:229-240 被引量:1
  • 4Bernaille L, Teixeira R, Akodkenou I, et al. Traffic classification on the fly. Computer Communication Review, 2006, 36(2): 23-26 被引量:1
  • 5Sadasivan G, Brownlee N, Claise B, et al. Architecture for IP flow information export. 2006, http://www.ietf.org/ intemet-drafts/draft-ietf- ipfix-architecture-12.txt 被引量:1
  • 6Egevang K, Francis P. The IP Network Address Translator (NAT). RFCI631. 1994 被引量:1
  • 7Senie D. Network Address Translator (NAT)-friendly application design guidelines. RFC3235. 2002 被引量:1
  • 8BitTorrent. 2005, http://wiki.bitcomet.com/help-zh/tracker (in Chinese) 被引量:1
  • 9Sung L, Li H. Neighbor selection strategies for P2P systems using tit-for-tat exchange algorithm. 2005, http://www. cs.uwa terloo.ca/-lgasung/ 被引量:1
  • 10PPLive. 2006, http://www.pplive.com/zh-crdindex.html (in Chinese) 被引量:1

共引文献214

同被引文献88

  • 1刘鹏,姚正,尹俊杰.一种有效的C4.5改进模型[J].清华大学学报(自然科学版),2006,46(z1):996-1001. 被引量:28
  • 2赵树鹏,陈贞翔,彭立志.基于流中前5个包的在线流量分类特征[J].济南大学学报(自然科学版),2012,26(2):156-160. 被引量:3
  • 3Internet Assigned Numbers Authority(IANA).http://www.iana.org/assignments/port-numbers,August 28,2010. 被引量:1
  • 4Moore A W,Papagiannaki D.Toward the accurate Identification of network applications[C]∥Proc.6th Passive Active Measurement.Workshop(PAM),2005,3431:41-54. 被引量:1
  • 5Sen S,Spatscheck O,Wand D.Accurate,scalable in-networkidentification of P2P traffic using application signatures[C]∥Proceedings of the 13th International World Wide Web Confe-rence on Alternate Track Papers & Posters(WWW'04).New York,NY,USA,ACM,2004:512-521. 被引量:1
  • 6Karagiannis T,Papagiannaki K,Faloutsos M.BLINC:Multilevel traffic classification in the dark[C]∥ACM SIGCOMM.Phila-delphia,PA,USA,2005. 被引量:1
  • 7Roughan M,Sen S,Spatscheck O,et al.Class-of-service mapping for QoS:A statistical signature-based approach to IP traffic classification[C]∥Proceedings of ACM SIGCOMM Internet Mea-surement Conference.Taormina,Sicily,Italy,2004. 被引量:1
  • 8Moore A W,Zuev D.Internet Traffic Classification UsingBayesian Analysis Techniques[C]∥Proceedings of ACM SIGMETRICS International Conference on Measurement and Mo-deling of Computer Systems.New York,USA,2005. 被引量:1
  • 9McGregor A,Hall M,Lorier P,et al.Flow Clustering UsingMachine Learning Techniques[C]∥Proceedings of PAM'04.Antibes Juan-les-Pins,France,2004. 被引量:1
  • 10Zander S,Nguyen T,Armitage G.Self-Learning IP Traffic Classification Based on Statistical Flow Characteristics[C]∥Proceedings of PAM'05.Boston,USA,2005. 被引量:1

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部