期刊文献+

关于伪Smarandache对偶函数Z*(n)的性质

Properties of the Pseudo-Smarandache Dual Function Z* (n)
原文传递
导出
摘要 对于任意正整数n,伪Smarandache对偶函数Z*(n)定义为最大正整数m使得m(m+1)/2|n。即Z*(n)=max{m:(m+1)/2|n,m∈N}。利用初等方法及解析方法研究下列两个问题:(1)数列|Z*(n+1)-Z*(n)|是否有界?(2)级数∞/∑/n=1/Z*(n)/n_5收敛还是发散?得到如下结论:(1)数列|Z*(n+1)-Z*(n)|是无界的;(2)当s<1时,级数∞/∑/n=1/Z*(n)/n_5发散;当s>3/2时,级数∞/∑/n=1/Z*(n)/n_5收敛。 For any positive integer n, dual of the Pseudo-Smarandache function Z. (n) is defined asZ*(n)=max{m:(m+1)/2|n,m∈N}.The main purpose of this paper is to use the elementary andanalytic method to study the sollowing two problems: (1) Is the sequence|Z*(n+1)-Z*(n)|bounded or unbounded? (2)Is the series∞/∑/n=1/Z*(n)/n_5convergent or divergent? We get conclusions asfollows : (1) The sequence|Z*(n+1)-Z*(n)|Ifs〈1 then∞/∑/n=1/Z*(n)/n_5is divergentl ifs〉3/2,then∞/∑/n=1/Z*(n)/n_5is convergent.
作者 樊旭辉
出处 《武警工程大学学报》 2013年第4期1-3,共3页 Journal of Engineering University of the Chinese People's Armed Police Force
基金 陕西省自然科学基金项目(2011JMl019) 武警工程大学基础研究基金项目(WJY20l106)
关键词 伪Smarandache函数Z(n) 伪Smarandache对偶函数Z*(n) 级数 Pseudo-Smarandache function Z (n) dual of the Pseudo-Smarandache functionZ. (n) series
  • 相关文献

参考文献8

  • 1Kashihara, Kenichiro. Comments and topics on smarandache notions and problems [M]. USA erhus university press, 1996: 120. 被引量:1
  • 2Gorskid. The pseudo smarandache function [J]. Smaran- dache notions journal, 2002,13(1-3):140-149. 被引量:1
  • 3Ashbacher, Charles. On numbers that are pseudo-smaran- dache and smarandache per-fect [J]. Smarandache notions journal, 2004,14(1) :40-41. 被引量:1
  • 4Majumdar A A K. A note on the pseudo-smarandaehe fune- tion[J]. Scientia magna, 2006,3(2) :1-25. 被引量:1
  • 5张文鹏.关于F.Smarandache函数的两个问题[J].西北大学学报(自然科学版),2008,38(2):173-176. 被引量:62
  • 6Jozsef Sandor. On a dual of the pseudo-smarandache function [J]. 2002,13(1-2-3) :18-23. 被引量:1
  • 7易媛.Smarandache问题研究[M].High ameriean press,2006:57. 被引量:1
  • 8Apostol T M. Introduction to analytic number theory[M]. New York: Springer-verlag, 1976: 113. 被引量:1

二级参考文献9

  • 1徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 2SMARANDACHE F.Only Problems,Not Solutions[M].Chicago:Xiquan Publishing House,1993. 被引量:1
  • 3WANG Yong-xing.On the Smarandache function[J].Re-search on Smarandache Problem in Number Theory,2005,2:103-106. 被引量:1
  • 4LU Ya-ming.On the solutions of an equation involving the Smarandarche function[J].Seientia Magna,2006,2(1):76-79. 被引量:1
  • 5SANDOR J.On a dual of the Pscudo-Smarandache func-tion[J].Smarandache Notions (Book Series),2002,13:16-23. 被引量:1
  • 6LE Mao-hua.TWo function equations[J].Smarandache Notions Journal,2004,14:180-182. 被引量:1
  • 7COP,SKI D.The pseudo-Smarandache functions[J].Sma-randache Notions J,2000,12:140-145. 被引量:1
  • 8SANDOR J.On additive analogues of certain arithmetic function[J].Smarandache Notions J,2004,14:128-132. 被引量:1
  • 9KASHIHARA K.Comments and topics on Smarandaehe notions and problems[M].New Mexico:Erhus University Press,1996. 被引量:1

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部