摘要
n∈N+,著名的伪Smarandache函数Z(n)定义为满足∑mk=1k能被n整除的最小正整数m,即Z(n)=min{m:n|(m(m+1))/2}.Smarandache互反函数Sc(n)定义为满足y|n!且1≤y≤m的最大正整数m,即Sc(n)=max{m:y|n!,1≤y≤m;m+1 n!}.借助同余方程,利用初等方法,分析数论函数性质,研究了包含伪Smarandache函数Z(n),Smarandache互反函数Sc(n)的方程Sc(n)+Z(n)=2n的解的问题,并给出一些有趣的结果.
For any positive integer n,the famous pseudo Smarandache function Z(n) is defined as min{m:n|m(m+1)/2}.The Smarandache reciprocal function Sc(n) is defined as max{m:y|n!,1≤y≤m,m+1 n!}.Based on the analysis of the properties for Z(n) and Sc(n),the solution of the equation Sc(n)+Z(n)=2n is discussed.Some results about the solution are obtained,by using the congruence equation theory,as well as the elementary method.
出处
《纺织高校基础科学学报》
CAS
2010年第2期188-190,共3页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(10671155)