期刊文献+

多领域优化设计中耦合因素的一种协调方法 被引量:8

A Collaborative Approach for Coupled Factors in Multidisciplinary Design Optimization
下载PDF
导出
摘要 由多领域组成的大系统协同优化设计中 ,主要存在两类耦合因素 :一是多个领域都需要对其进行优化设计的变量 ,即系统变量或交叉变量 ;二是某个领域计算的结果作为另一个领域的输入 ,即相关变量或耦合变量。这些耦合因素的存在 ,导致整个系统求解的过程出现混乱和无序。本文根据二级求解技术 ,通过引入一些辅助变量 ,提出一种处理这些耦合因素的方法 。 In multidisciplinary design optimization (MDO), coupled factors usually exist. Such factors usually include two sorts of variables: system variables and coupled variables. System variables are optimized in different disciplinaries concurrently. So, to the same system variable, given the same initial value, different values will perhaps be obtained from different disciplinaries. Coupled variables of a disciplinary are often the outputs of other disciplinaries. The coupled variables can cause disorder in solving. So,it is necessary to take measures to keep its value in accordance during solving. Two Level method is one of the valid approaches to solve this problem by optimizing system variables only in the top level. But it is invalid to coupled variables. In this paper, by introducing some auxiliary variables, a collaborative approach is presented. An example is given to demonstrate the application of the approach.
出处 《机械科学与技术》 CSCD 北大核心 2000年第6期872-876,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金! ( 5 963 5 15 0 )
关键词 多领域协同优化 耦合因素 二级求解 交叉变量 Multidisciplinary design optimization Coupled factors Two Level solution
  • 相关文献

参考文献7

  • 1Tappeta R V, et al. Multiobjective Collaborative Optimization[J]. J. of Mech Design. 1997,119(9):403~411 被引量:1
  • 2Balling R J, et al. Optimization of Coupled Systems:A Critical Overview of Approaches[J]. J. AIAA, 1996,34(1):6~17 被引量:1
  • 3Braun R D, et al. Comparison of Two Multidisciplinary Optimization Strategies for Launch-Vehicle Design[J]. J of Spacecraft and Rockets.1995,32(3):404~410. 被引量:1
  • 4Tappeta R V, et al. A Comparison of Equality Constraint Formulations for Concurrent Design Optimization[A].Proce of the 1996 ASME Design Eng. Tech. Conf. and Computers in Eng. Conference[C], 96-DETC/EIM-1423. 被引量:1
  • 5Azarm S, et al. Optimality and Constrained Derivatives in Two-Level Design Optimization[J]. J. of Mech Design. 1990,112(12): 563~568 被引量:1
  • 6Kirsch U. Two-level Optimization of Prestressed Structures[J].Eng. Structures,1997,19(4):309~317 被引量:1
  • 7运筹学与最优化理论卷-现代应用数学手册.北京:清华大学出版社,1998 被引量:1

同被引文献59

引证文献8

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部