期刊文献+

改进的交互式多模型粒子滤波目标跟踪算法 被引量:5

A Target Tracking Algorithm Based on Improved Interacting Multiple Model Particle Filter
下载PDF
导出
摘要 针对现有的交互式多模型粒子滤波算法存在粒子退化现象,跟踪性能不高,计算量大影响跟踪的实时性等问题,采用改进的残差重抽样算法,并在滤波前后,对各模型粒子进行输入输出交互运算,得出一种改进的交互式多模型粒子滤波目标跟踪算法。该算法在解决了粒子退化现象的同时,避免了残留粒子重采样问题,在一定程度上降低了计算量,减小了系统估计误差,提高了跟踪性能。通过仿真,验证了该算法的良好性能。 In view of the particles degeneracy phenomenon,not perfecting tracking performance and the high computational complexity which lower the real-time performance of tracking in the exacting interacting multiple model particle filter algorithm,an improved residual re-sampling algorithm is used and the particles of all models interact with computing before and after filtering,finally a new target tracking algorithm based on improved interacting multiple model particle filter is obtained.The algorithm not only solved the problems of particles degeneracy phenomenon and residual particles re-sampling,but improved the tracking performance,together with a lower computational complexity.Simulation results confirmed the proposed IMMPF algorithm.
出处 《弹箭与制导学报》 CSCD 北大核心 2013年第3期9-11,16,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 航空科学基金(20125151028)资助
关键词 交互式多模型 粒子滤波 目标跟踪 IMMPF interacting multiple model particle filter target tracking IMMPF
  • 相关文献

参考文献13

  • 1D T Magill. Optimal adaptive estimation of sampled sto- chastic process[J]. IEEE Transactions on Automatic Con- trol, 1965, 10(4):434-439. 被引量:1
  • 2Blom H A, Bar-shalom Y. The interacting multiple model algorithm for systems with markovian switching coefficients [J]. IEEE Trans. On Automatic Control, 1988, 33(8) 780 - 783. 被引量:1
  • 3Manor E, Averbuch A, Bar-shalom Y, et al. Interactin multiple model methods in target tracking: A survey [ J ] IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1) : 103 -123. 被引量:1
  • 4Rong Li X, Jilkov V P. Survey of maneuvering target track- ing. Part V. Multiple-model methods[J]. IEEE Transac-tions on Aerospace and Electronic Systems, 2005,41 (4) : 1255 - 1321. 被引量:1
  • 5Djouadi M S, Morsly Y, Berkani D. A fuzzy IMM-UKF al- gorithm for highly maneuvering multi-target visual-based tracking[ C l// Mediterranean Conference on Control & Automation, 2007 : 1 - 7. 被引量:1
  • 6权太范编著..目标跟踪新理论与技术[M].北京:国防工业出版社,2009:378.
  • 7刘高峰,顾雪峰,王华楠.强机动目标跟踪的两种MM算法设计与比较[J].系统仿真学报,2009,21(4):965-968. 被引量:7
  • 8袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7):970-973. 被引量:77
  • 9Boers Y, Drlessen J N. Interacting multiple model particle filter[ J]. IEEE Proc. Radar Sonar Navig. ,2003, 150 ( 5 ) : 344 - 349. 被引量:1
  • 10Blom H A P, Bloem E A. Particle filtering for stochastic hybrid systems[ C ]//43 rd IEEE Conference on Decision and Control, 2004:3221 - 3226. 被引量:1

二级参考文献40

共引文献107

同被引文献24

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部