期刊文献+

模拟并行蚁群算法的绿色物流最小油耗VRPSDP 被引量:8

Green Logistics Capacitated VRPSDP Based on Ant Colony Algorithm
下载PDF
导出
摘要 十八大经济工作会议后,政府与企业将绿色低碳放到更重要的位置上来,城镇建设、传统制造等行业均需思考如何变得更绿色,对于物流运输行业更是如此,本文的创新之处在于以燃油消耗最小化为目标,在同时取货送货的逆向物流条件下,建立了一种带行驶距离、货物重量、道路路面、道路坡度等四大影响行驶油耗因素的VRPSDP模型.算法上做了蚁群算法在启发式因子的改进,并在信息素更新方面借鉴并行蚁群算法的优点,通过一个处理机模拟出并行蚁群算法特点,更好的模仿了蚂蚁在真实自然环境中的并行策略,接着探讨了影响蚁群算法的算法参数设置.实证结果表明,优化方案取得了令人满意的效果,从而验证了本文所提出的方法论的科学性和有效性. After the eighteenth central economic working conference of the CPC, the government and enterprises are giving priority to Green industry, which applies for Towns construction, traditional manufacturing industries, especially for the logistics and transport. Different from the traditional VRP, we set minimizing fuel consumption as the objective rather than the transport distances, and establish a VRP model that take 4 factors that are essential to fuel consumption: running distance, cargo weight, road pavement, and road grade, under the VRP with simultaneous Pick-up and Delivery(VRPSDP). A new heuristic factor is adopted, the pheromone update is also a new version in order to better mimic the ants' parallel strategy in natural environment. Then we explore the parameters setting which affect ACS's performances a lot. The empirical results show that the optimization program has achieved satisfactory results, thus validating the scientific and effectiveness of the proposed methodology.
作者 于雷 王东
出处 《计算机系统应用》 2013年第7期127-132,160,共7页 Computer Systems & Applications
基金 国家科技部科技支撑计划重大项目(2006BAH02A07)
关键词 车辆路径问题 蚁群算法 货物权重 行驶油耗 逆向物流 VRP ACS cargo coefficient fuel consumption reverse logistics
  • 相关文献

参考文献12

  • 1Min H.The multiple vehicle routing problems with simul- taneous delivery and pick-up points.Transportation Resarch, 1989,23(5):377-386. 被引量:1
  • 2Luca Maria Gambardella, et al. A Multiple Colony System For Vehicle Routing Problems With Time Windows. TECHNICAL REPORT IDSIA,1999. 被引量:1
  • 3Donati AV, et al. Time dependent vehicle routing problemwith a multi ant colony system. European Journal of Operational Research, 2008,185(3): 1174-1191. 被引量:1
  • 4李琳,刘士新,唐加福.B2C环境下带预约时间的车辆路径问题及多目标优化蚁群算法[J].控制理论与应用,2011,28(1):87-93. 被引量:17
  • 5Mavrovouniotis M, Yang SX. Ant Colony Optimization with Immigrants Schemes for the Dynamic Vehicle Routing Problem. Computer Science, 2012, 7248:519-528. 被引量:1
  • 6Gajpal Y, Abad P. An ant colony system (ACS) for vehicle routing problem with simultaneous delivery and pickup. Computers & Operations Research, 2009,36(12): 3215-3223. 被引量:1
  • 7Dorigo M, Maniezzo V, Colomi A. Positive feedback as a search strategy. Dipartimento di Eleta'onica, Politecnico di Milano, Italy, Tech.Rep. 1991: 91-106. 被引量:1
  • 8Sttltzle T, Hoos HH. MAX- MIN Ant System, Future Generation Computer Systems, 2000,16(8): 889-914. 被引量:1
  • 9Gambardella LM, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies. In: Baeck T, et al. eds. Proc. 1996 IEEE International Conference on Evolutionary Computation (ICEC'96). IEEE Press, 1997: 622-627. 被引量:1
  • 10章春芳,业宁.基于信息素的多种反馈作用的并行蚁群算法.计算机与信息技,2012(3). 被引量:1

二级参考文献12

  • 1刘士新,宋健海,周山长.热轧带钢轧制批量计划优化模型及算法[J].控制理论与应用,2007,24(2):243-248. 被引量:16
  • 2STEPHEN H.A comparison of B2C E-Commerce in developing countries[J].Electronic Commerce Research,2004,4(3):181-199. 被引量:1
  • 3TIMON C D,ELDON Y L,DEFROSE C.Dynamic vehicle routing for online B2C delivery[J].Omega,2005,33(1):33-45. 被引量:1
  • 4PATRICIA L M.A conceptual analysis of the transportation impacts of B2C e-commerce[J].Transportation,2004,31(3):257-284. 被引量:1
  • 5THIERRY M.EDITH N.Arcs-states models for the vehicle routing problem with time windows and related problems[J].Computers & Operations Research,2007,34(4):1061-1084. 被引量:1
  • 6DAVID M,OLLI B.Active guided evolution strategies for large-scale vehicle routing problems with time windows[J].Computers & Operations Research,2005,32(6):1593-1614. 被引量:1
  • 7DORIGO M,MANIEZZO V,COLORNI A.Ant system:optimization by a colony of cooperative agents[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,1996,26(1):29-41. 被引量:1
  • 8MULLEN R J,MONEKOSSO D,BARMAN S,et al.A review of ant algorithms[J].Expert Systems with Applications,2009,36(6):9608-9617. 被引量:1
  • 9DOERNER K E GUTJAHR W J,HARTL R E et al.Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection[J].European Journal of Operational Research,2006,171(3):830-841. 被引量:1
  • 10CHAHARSOOGHI S K,AMIR H M K.An effective ant colony optimization algorithm(ACO)for multi-objective resource allocation problem(MORAP)[J].Applied Mathemutics and Computation,2008,200(1):167-177. 被引量:1

共引文献16

同被引文献79

引证文献8

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部