摘要
针对人脸识别应用中的高维数据图像以及欧氏距离不能准确体现样本间的相似度的问题,提出了一种基于马氏距离的局部边界Fisher分析(MLMFA)降维算法。该算法从现有的样本中学习得到一个马氏度量,然后在近邻选择以及新样本降维过程中用马氏距离作为相似性度量。同时,通过马氏度量构造出类内"相似"图和类间"代价"图来描述数据集的类内紧凑性和类间分离性。MLMFA很好地保持了数据集的局部结构。用YALE和FERET人脸库进行实验,MLMFA的最大识别率比传统基于欧氏距离算法的最大识别率平均分别提高了1.03%和6%。实验结果表明,算法MLMFA具有很好的分类和识别性能。
Considering high dimensional data image in face recognition application and Euclidean distance cannot accurately reflect the similarity between samples, a Mahalanobis distance based Local Marginal Fisher Analysis (MLMFA) dimensionality reduction algorithm was proposed. A Mahalanobis distance could be ascertained from the existing samples. Then, the Mahalanobis distance was used to choose neighbors and to reduce the dimensionality of new samples. Meanwhile, to describe the intra-class compactness and the inter-class separability, intra-class “similarity” graph and inter-class “penalty” graph were constructed by using Mahalanobis distance, and local structure of data set was preserved well. With the proposed algorithm being conducted on YALE and FERET, MLMFA outperforms the algorithms based on traditional Euclidean distance with maximum average recognition rate by 1.03% and 6% respectively. The results demonstrate that the proposed algorithm has very good classification and recognition performance.
出处
《计算机应用》
CSCD
北大核心
2013年第7期1930-1934,共5页
journal of Computer Applications
基金
国家自然科学基金资助项目(61175111)
江苏省高校自然科学基金资助项目(10KJB510027)
关键词
马氏距离
局部边界Fisher分析
降维
人脸识别
Mahalanobis Distance Local Marginal Fisher Analysis Dimensionality Reduction Face Recognition