期刊文献+

基于马氏距离的局部边界Fisher分析降维算法 被引量:5

Dimensionality reduction algorithm of local marginal Fisher analysis based on Mahalanobis distance
下载PDF
导出
摘要 针对人脸识别应用中的高维数据图像以及欧氏距离不能准确体现样本间的相似度的问题,提出了一种基于马氏距离的局部边界Fisher分析(MLMFA)降维算法。该算法从现有的样本中学习得到一个马氏度量,然后在近邻选择以及新样本降维过程中用马氏距离作为相似性度量。同时,通过马氏度量构造出类内"相似"图和类间"代价"图来描述数据集的类内紧凑性和类间分离性。MLMFA很好地保持了数据集的局部结构。用YALE和FERET人脸库进行实验,MLMFA的最大识别率比传统基于欧氏距离算法的最大识别率平均分别提高了1.03%和6%。实验结果表明,算法MLMFA具有很好的分类和识别性能。 Considering high dimensional data image in face recognition application and Euclidean distance cannot accurately reflect the similarity between samples, a Mahalanobis distance based Local Marginal Fisher Analysis (MLMFA) dimensionality reduction algorithm was proposed. A Mahalanobis distance could be ascertained from the existing samples. Then, the Mahalanobis distance was used to choose neighbors and to reduce the dimensionality of new samples. Meanwhile, to describe the intra-class compactness and the inter-class separability, intra-class “similarity” graph and inter-class “penalty” graph were constructed by using Mahalanobis distance, and local structure of data set was preserved well. With the proposed algorithm being conducted on YALE and FERET, MLMFA outperforms the algorithms based on traditional Euclidean distance with maximum average recognition rate by 1.03% and 6% respectively. The results demonstrate that the proposed algorithm has very good classification and recognition performance.
出处 《计算机应用》 CSCD 北大核心 2013年第7期1930-1934,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61175111) 江苏省高校自然科学基金资助项目(10KJB510027)
关键词 马氏距离 局部边界Fisher分析 降维 人脸识别 Mahalanobis Distance Local Marginal Fisher Analysis Dimensionality Reduction Face Recognition
  • 相关文献

参考文献2

二级参考文献27

  • 1Turk M,Pentland A. Eigenfaces for Recognition[J].Journal of Cognitive Neuroscience,1991,(01):71-86.doi:10.1162/jocn.1991.3.1.71. 被引量:1
  • 2Belhumeur P N,Hespanha J P,Kriegman D J. Eigenfaces vs.Fisherfaces-Recognition Using Class Specific Linear Projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,(07):711-720.doi:10.1109/34.598228. 被引量:1
  • 3Hyvarinen A. Survey on Independent Component Analysis[J].Neural Computing Surveys,1999,(01):94-128. 被引量:1
  • 4Tenenbaum J B,de Silva V,Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J].Science,2000,(5500):2319-2323.doi:10.1126/science.290.5500.2319. 被引量:1
  • 5Roweis S T,Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J].Science,2000,(5500):2323-2326.doi:10.1126/science.290.5500.2323. 被引量:1
  • 6Belkin M,Niyogi P. Laplacian Eigenmaps for Dimension Reduction and Data Representation[J].Neural Computation,2001,(06):1373-1396. 被引量:1
  • 7Zhang Zhenyue,Zha Hongyuan. Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J].Journal of Shanghai University(English Edition),2004,(04):406-424. 被引量:1
  • 8Donoho D L,Grimes C. Hessian Eigenmaps:New Locally Linear Embedding Techniques for High-Dimensional Data[J].Proc of the National Academy of Arts and Sciences,2003,(10):5591-5596. 被引量:1
  • 9Wang Liwei,Zhang Yan,Feng Jufu. On the Euclidean Distance of Images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,(08):1334-1339. 被引量:1
  • 10Zhang Lijing;Wang Ning.Locally Linear Embedding Based on Image Euclidean Distance[A]山东济南,20071914-1918. 被引量:1

共引文献74

同被引文献47

  • 1赵小强,李雄伟.基于改进马氏距离的模糊C聚类研究[J].中南大学学报(自然科学版),2013,44(S2):195-198. 被引量:5
  • 2张官亮,邹焕新,孙浩,刘志波.基于马氏距离加权图转换的点模式匹配[J].中南大学学报(自然科学版),2013,44(S2):323-328. 被引量:1
  • 3岳佳,王士同.高斯混合模型聚类中EM算法及初始化的研究[J].微计算机信息,2006,22(11X):244-246. 被引量:51
  • 4HAGUE T, MARCHANT J, TILLETY N D, et al. Ground-based sensing systems for autonomous agricultural vehicles[ J]. Computers and Electronics in Agriculture, 2000, 25(1) : 11 -28. 被引量:1
  • 5LEGER P C, DEEN R G, BONITZ R G, et al. Remote image anal- ysis for mars exploration rover mobility and manipulation operations [ C]// Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE Press, 2005, 1 : 210 -217. 被引量:1
  • 6THRUN S, MONTEMERLO M, DAHKAMP H, et al. Stanley: the robot that won the DARPA grand challenge: research articles [ J]. Journal of Robotic Systems - Special Issue on the DARPA Grand Challenge, Part 2, 2006, 23(9) : 661 -692. 被引量:1
  • 7REINA G, MILELLA A. Towards autonomous agriculture: automat- ic ground detection using trinocular stereovision[ J]. Sensors, 2012 (12) : 12405 - 12423. 被引量:1
  • 8SONG D, LEE H, YI J, et al. Vision-based motion planning for an autonomous motorcycle on ill-structured roads[ J]. Autonomous Ro- bots, 2007,23(3) : 197 -212. 被引量:1
  • 9Dornaika F, Assoum A. Enhanced and parameterless lo- cality preserving projections for face recognition[J-~. Neu- roeomputing, 2013,99 : 448-457. 被引量:1
  • 10Borg I, Groenen P. Modern multidimensional scaling: theory and applications[M]. NewYork : Springer-Verlag, 2005 : 3-13. 被引量:1

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部