期刊文献+

基于自适应线性逻辑网络的风电功率预测方法性能评估与分析 被引量:1

Performance assessment and analysis of wind power forecasting method based on adaptive linear logic network
下载PDF
导出
摘要 介绍了一种基于自适应线性逻辑网络(ALLN)的风电功率预测方法,描述了ALLN算法的特点、基本结构、建模方法以及预测与学习方法;采用该方法进行了风速预测试验,对试验结果进行了对比分析,详细分析了影响试验结果的因素。首次提出了模型适应性的概念,并给出了计算公式。从模型训练输入数据和预测输入数据的角度,分析了影响ALLN算法模型适应性与预测结果的主要因素。 A wind power forecasting method based on adaptive linear logic network (ALLN) is introduced in this paper. The characteristics, basic mechanism and modeling methods, prediction and studying methods of ALLN algorithm are given in details. Wind speed forecasting experiments are carried out and then experimental results are compared, analyzed and evaluated to obtain factors which effect on testing results. The concept of model adaptability and its definition are brought forward for the first time. In the end, the main factors which have effects on ALLN forecasting results are analyzed viewing from input data used for model training and input data used for wind speed forecasting.
出处 《可再生能源》 CAS 北大核心 2013年第6期61-65,共5页 Renewable Energy Resources
基金 中国华电集团科技项目(CHFKJ12-01-22)
关键词 风电功率预测 短期预测 自适应线性逻辑网络 预测性能评估 预测模型 wind power forecast short-term forecast Adaptive Linear Logic Network assessment for prediction performance prediction model
  • 相关文献

参考文献15

二级参考文献89

共引文献802

同被引文献21

  • 1Dowell, J, Weiss, S, Infield, D. Kernel methods for short-term spatio-temporaI wind prediction[C]//IEEE PES General Meeting. 2015. 被引量:1
  • 2XIU Chunbo, WANG Tiantian, TIAN Meng, et al. Short-term prediction method of wind speed series based on fractal interpolation[J]. Chaos Solitons & Fractals, 2014, 68:89-97. 被引量:1
  • 3Chitsaz H, Amjady N, Zareipour H. Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm[J]. Energy Conversion & Management, 2015, 89: 588-598. 被引量:1
  • 4Liu H, Hong-qi Tian, Yan-fei Li. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed predietion[J], Applied Energy, 2012, 98(12) : 415-424. 被引量:1
  • 5Zhao H, Wu Q, Hu S, et al. Review of energy storage system for wind power integration support[J]. Applied Energy, 2015, 137: 545-553. 被引量:1
  • 6Dowell J, Pinson P. Very-Short-Term probabilistic wind power forecasts by sparse vector autoregression[J]. IEEE Transactions on Smart Grid, 2015: 1. 被引量:1
  • 7Papavasiliou A, Oren S S, Aravena I. Stochastic modeling of multi-area wind power production[J]. 2015:2616-2626. 被引量:1
  • 8Carpinone A, Giorgio M, Langella R, et al. Markov chain modeling for very-short-term wind power forecasting[J]. Electric Power Systems Research, 2015, 122: 152-158. 被引量:1
  • 9Guo Z H, Zhao W G, Lu H Y, et al. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model[J]. Renewable Energy, 2014, 37(1): 241-249. 被引量:1
  • 10Xu G W, Xiu C B, Wan Z K. Hysteretic chaotic operator network and its application in wind speed series prediction[J]. Neurocomputing, 2015, 165: 384-388. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部