期刊文献+

Mean Shift跟踪算法中核函数参数的评估与分析 被引量:1

Evaluation and Analysis on the Scale of Kernel Function for Mean Shift Object Tracking
原文传递
导出
摘要 Mean Shift是一种基于特征的对目标实现快速跟踪的算法,传统的Mean Shift算法由于跟踪中物体的尺度变化会使跟踪偏离目标乃至跟踪失败,并且原有的自适应地对跟踪窗宽的调整,是基于对核窗宽的改变来得到的。在"固定跟踪窗宽—改变核窗宽"的基础上对目标进行跟踪,对目标空间定位精度进行了评估与分析,通过实验结果表明改变核函数参数能改善目标跟踪的精度。 Mean Shift is a fast tracking algorithm based in feature space.Classical mean shift tracker by kernel function sometimes fails in localization of target window,especially when object scale varies.Almost all adaptive adjustments of the scale of tracking window is based on kernel-bandwidth.In this paper,we fix the size of tracking window and vary the size of kernel window in order to evaluate and analyze the effective of the scale of kernel function.The experiment results prove that changing the scale of kernel function can encourage localization accuracy.
出处 《光学与光电技术》 2012年第2期80-83,92,共5页 Optics & Optoelectronic Technology
基金 山东电力集团公司科研基金(2009A-08-04)资助项目
关键词 目标跟踪 核窗宽 均值漂移 核函数 tracking kernel-bandwidth mean shift kernel function
  • 相关文献

参考文献10

  • 1K Quast,A Kaup.Scale and Shape adaptive Mean Shift Object Tracking in Video Sequences[].Pro-ceedings of European Signal Processing Conference.2009 被引量:1
  • 2Q Qifeng,D Zhang,Y Peng.An Adaptive Selection of the Scale and Orientation in Kernel Based Tracking[].Proceedings of the Third International IEEE Conference on Signal-Image Technologies and Inter-net-Based System.2007 被引量:1
  • 3Bhattacharyya Anil.On a measure of divergence betweentwo statistical populations defined by their probability dis-tribution[].Bulletin of the Calcutta MathematicalSociety.1943 被引量:1
  • 4Fukunaga K,Hostetler L D.The estimation of the gradient of a density function, with applications in pattern recognition[].IEEE Transactions on Information Theory.1975 被引量:1
  • 5Cheng Y.Mean shift,mode seeking and clustering[].IEEE Transactions on Pattern Analysis and Machine Intelligence.1995 被引量:1
  • 6Dorin Comaniciu,Peter Meer.Mean shift: A robust approach toward feature space analysis[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2002 被引量:1
  • 7Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2003 被引量:1
  • 8Dorin Comaniciu,Visvanathan Ramesh,Peter Meer.Real-time tracking of non-rigid objects using mean shift[].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2000 被引量:1
  • 9Collins RT.Mean-shift blob tracking through scale space[].Proceedings of the IEEE Computer Society Conference on Computer Visionand Pattern Recognition(CVPR).2003 被引量:1
  • 10MAGGIO E,,CAVALLARO A.Hybrid particle filter and Mean-Shifttracker with adaptive transition model[].Proc of International Con-ference on AcousticsSpeechand Signal Processing.2005 被引量:1

同被引文献10

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部