期刊文献+

氧、氢和碳原子在α-铀(001)表面吸附与扩散特性的第一性原理研究 被引量:1

First-principles study of adsorption and diffusion properties of O, H and C atoms on α-U(001) surface
下载PDF
导出
摘要 应用第一性原理密度泛函理论系统研究氧、氢和碳原子在α-铀(001)表面的吸附与扩散特性。研究发现:在铀表面氧原子与氢原子择优吸附在H2位置,碳原子倾向于占据在H1位置;氧原子在铀表面的扩散势垒较低,容易在铀表面上扩散,形成表面氧化层;氢原子的扩散势垒较高,碳原子的扩散势垒最大,难以在表面扩散。吸附原子从铀表面向次表面层扩散时,氧原子的扩散势垒很高,难以向次表面扩散;碳和氢原子的扩散势垒较低,特别是在氧的辅助作用下,碳原子向次表面的扩散势垒降低约0.5 eV,使碳原子易于向次表面层扩散;铀表面上会形成氧化层,次表面会形成富碳层,可对铀的进一步氧化起到抑制作用,这与相关实验结果符合较好。 The adsorption and diffusion properties of O, H and C atoms on α-U(001) surface were studied by first-principles density functional theory approach. For the on-surface adsorption, O and H atoms prefer to occupy the H2 site, while C atoms tend to occupy the H1 site. The diffusion barrier of O atom on U surface is low and the diffusion is easy, which will lead to the formation of uranium-oxidation layer on the top of surface. The diffusion barrier of H atom is larger and that of C atom is the largest one, thus it is difficult for C atom diffusion on the U surface. As for the diffusion of atom from the surface site to the sub-surface, the barriers of H and C atoms are low, while that of O atom is very high, which indicates that the O atom can not migrate into the next surface. And the barrier of C atom diffusion to the sub-surface is reduced by about 0.5 eV with the assistance of O atom nearby. The U-O oxidation layer on the surface and the U-C layer on the sub-surface can be formed easily, which help to prevent the metallic U from further oxidation. These results agree good with available experiments.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2013年第4期1160-1167,共8页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(10976009)
关键词 α-铀 第一性原理 表面吸附 扩散势垒 α-uranium first-principles surface adsorption diffusion barrier
  • 相关文献

参考文献6

二级参考文献66

  • 1Huda,M.N.; Ray,A.K.Int.J.Quantum Chem.,2004,102:98. 被引量:1
  • 2Dholabhai,P.P.; Ray,A.K.J.Alloy.Compd.,2007,444:356. 被引量:1
  • 3Nie,J.L.; Xiao,H.Y.; Zu,X.T.; Fei,G.J.Phys.-Condes.Matter,2008,20:445001. 被引量:1
  • 4Senanayake,S.D.; Soon,A.; Kohlmeyer,A.; Sohnel,T.; Idriss,H.J.Vac.Sci.Teclmol.A,2005,23:1078. 被引量:1
  • 5Blanter,M.S.; Glazkov,V.P.; Somenkov,V.A.The Physics of Metal and Metallography,2006,101:153. 被引量:1
  • 6Hohenberg,P.; Kohn,W.Phys.Rev.,1964,136:B864. 被引量:1
  • 7Kohn,W.; Sham,L.J.Phys.Rev.,1965,140:A1133. 被引量:1
  • 8Delley,B.J.Chem.Phys.,2000,113:7756. 被引量:1
  • 9Delley,B.Int.J.Quantum Chem.,1998,69:423. 被引量:1
  • 10Perdew,J.P.; Wang,Y.Phys.Rev.B,1992,45:13244. 被引量:1

共引文献11

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部