期刊文献+

基于区域分解的结构动力学系统首次穿越失效 被引量:2

FIRST PASSAGE PROBABILITIES OF STRUCTURAL DYNAMICS SYSTEM BASED ON DOMAIN DECOMPOSITION
下载PDF
导出
摘要 提出了高斯白噪声激励的线性及非线性结构动力学系统的首次穿越失效概率的估计方法.对于线性结构动力学系统,失效区域被分解为互斥的基本失效域之和,每个基本失效域可用其设计点完全描述,并以正态分布代替卡方分布估计失效概率中的参数.对于非线性结构动力学系统,基于Rice穿越理论,将非线性方程转化为与之具有相同平均上穿率的线性化方程,然后利用文中方法对等效线性化方程估计首穿失效概率.最后给出了线性及非线性结构动力学系统的数值例子,并将所提方法与蒙特卡罗法及重要样本法相比较,模拟结果显示了方法的正确性与有效性. The first passage problems of linear and nonlinear dynamical systems excited by Gauss white noise are considered. For linear dynamical system, the failure domain can be described as a union of mutually exclusive events, and every event is completely described by a local design point. The paper uses standard Gaussian distribution instead of chi-square distribution to estimate the parameter of first passage probability. For nonlinear dynamical system, the equivalent linear system is carried out based on the out-crossing theory. The linearization principle is that nonlinear and linear systems have the same up-crossing rate for a specified threshold. Finally the paper gives two examples. The results show that the method of the paper suggested is correct and effective by comparing with the Monte Carlo method.
作者 任丽梅 徐伟
出处 《力学学报》 EI CSCD 北大核心 2013年第3期421-425,共5页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10932009 11172233) 长安大学中央高校专项基金(CHD2011JC019)资助项目~~
关键词 结构可靠性 首穿失效概率 区域分解 等效线性化 structural reliability, first passage probability, domain decomposition, equivalent linearization
  • 相关文献

参考文献18

  • 1Proppe C, Pradlwarter H J, Schueller GI. Equivalent linearization and Monte Carlo simulation in stochastic dynamics. Probability Engi- neering Mechanics, 2003, 18(3): 1-15. 被引量:1
  • 2Spencer BF, Bergman LA. On the numerical solution of the Fokker- Planck equation for nonlinear stochastic systems. Nonlinear Dynam, 1993(4): 357-372. 被引量:1
  • 3Li W, Xu W. Stochastic optimal control of first passage failure for coupled Duffing-Van der Pol system under Gaussian white noise ex- citations. Chaos Solitons & Fractal, 2005, 25(5): 1221-1228. 被引量:1
  • 4Li W, Xu W. First passage problem for strong nonlinear stochastic dynamical system. Chaos Solitons & Fractal, 2006, 28(2): 414-421. 被引量:1
  • 5徐伟,孙春艳,孙建桥等.胞映射方法的研究和进展.力学逊展,2013,43(1):91-100. 被引量:1
  • 6徐伟,李伟,靳艳飞,赵俊锋.耦合Duffing-van der Pol系统的首次穿越问题[J].力学学报,2005,37(5):620-626. 被引量:7
  • 7任丽梅,徐伟,肖玉柱,王文杰.基于重要样本法的结构动力学系统的首次穿越[J].力学学报,2012,44(3):648-652. 被引量:7
  • 8Au SK, Beck JL. First excursion probability for linear systems by very efficient importance sampling. Probability Engineering Me- chanics, 2001, 16(3): 193-207. 被引量:1
  • 9Juu O, Hiroaki T. Importance sampling for stochastic systems un- der stationary noise having a specified power spectrum. Probability Engineering Mechanics, 2009, 24(4): 537-544. 被引量:1
  • 10Pradlwarter HJ, Schueller GI. Assessment of low probability events of dynamical systems by controlled' Monte Carlo simulation. Prob- ability Engineering Mechanics, 1999, 14(3): 213-227. 被引量:1

二级参考文献33

  • 1Roy RV. Asymptotic analysis of first-passage problems. Int J Non-linear Mechanics, 1977, 32:173~186. 被引量:1
  • 2Wang J, Gao L, Wu DJ. Effect on the mean first passage time in symmetrical bistable systems by cross-correlation between noises. Physics Letters A, 2003, 308:23~30. 被引量:1
  • 3Roberts JB. First-passage time for the envelope of randomly excited linear oscillator. J Sound and Vibration,1976, 46:1~14. 被引量:1
  • 4Sharp WD, Allen EJ. Numerical solution of first passage problems using an approximate Chapman-Kolmogorov relation. Prob Engng Mech, 1998, 3 (13): 233~241. 被引量:1
  • 5Aoki S. Simplified estimation method for first excursion probability of secondary system with gap. Nuclear Engng Design, 2002, 212:193~199. 被引量:1
  • 6Bergman LA, Heinrich JC. On the reliability of the linear oscillator and systems of coupled oscillators. Int J Numer Methods Engng, 1982, 18:1271~1295. 被引量:1
  • 7Sun JQ, Hsu CS. The generalized cell mapping method in nonlinear random vibration based upon short time Gaussian approximation. ASME J Applied Mechanics, 1990, 57:1018~1025. 被引量:1
  • 8Zhang Y, Wen B, Liu Q. First passage of uncertain single degree-of-freedom nonlinear oscillators. Comput Methods Appl Mech Engng, 1998, 165:223~231. 被引量:1
  • 9Lin YK, Cai GQ. Probabilistic Structure Dynamics: Advanced Theory and Applications. New York: McGraw-Hill Press, 1995. 363~403. 被引量:1
  • 10Zhu WQ, Yang YQ. Stochastic averaging of quasi-nonintegrable-Hamiltonian systems. ASME J Applied Mechanics, 1997, 64:157~163. 被引量:1

共引文献12

同被引文献26

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部