摘要
利用基于广义谐和函数的随机平均法,建立了高斯白噪声激励下五自由度强非线性随机振动系统的Pon-tryagin方程及后向Kolmogorov方程。求解这两个高维偏微分方程,得到了系统的平均首次穿越时间、条件可靠性函数以及平均首次穿越时间的条件概率密度。用Monte Carlo数值模拟验证了理论方法的有效性。
By using the stochastic averaging method based on generalized harmonic functions,Pontryagin equation and backward Kolmogorov equation of a 5DOF strongly nonlinear vibration system under Gaussian white noise excitation,were established.The mean first-passage time and the conditional reliability function and the conditional probability density function of the mean first-passage time were obtained after solving the above two higher-dimensional partial differential equations.All theoretical results were verified with Monte Carlo numerical simulation.
出处
《振动与冲击》
EI
CSCD
北大核心
2012年第12期1-4,共4页
Journal of Vibration and Shock
基金
国家自然科学基金(11132007
10802030)
教育部博士点新教师基金(200802511005)
关键词
强非线性系统
首次穿越
随机平均
随机振动
strongly nonlinear system
first-passage
stochastic averaging
random vibration