期刊文献+

非线性结构动力学系统的首次穿越 被引量:1

An important sampling procedure for estimating failure probabilities of non-linear dynamic systems
下载PDF
导出
摘要 在结构动力学系统的可靠性分析中,动力学系统的首次穿越失效一直是研究重点问题之一。基于重要抽样法基础上研究了非线性结构动力学系统的首次穿越。首先根据Rice公式,得到与非线性系统方程具有相同平均上穿率的等效线性化系统方程,利用此等效方程得到设计点的解析表达式,并用此解析式来构造控制函数,最后将此控制函数运用到非线性系统中,利用重要抽样法估计非线性系统的首穿失效概率。以Duffing振子为例,模拟结果显示了方法的正确性与有效性,与原始蒙特卡罗模拟方法相比较,样本数量、计算所需时间都有明显减小。 The failure probability is one of the most important reliability measures in structural reliability assessment of dynamical systems. Here, a procedure for estimating failure probabilities of non-linear systems based on the important sampling technique was presented. Firstly , by using Rice formula, the equivalent linear version of the non-linear systems was derived. Using the equivalent linear equation, the design point of the equivalent linear systems was used to construct control function. Secondly, an important sampling technique was used to estimate the first excursion probabilities for the non-linear system. Finally, a Duffing oscillator was taken for example. The simulation results showed that the proposed method is correct and effective ; the number of samples and the computational time are reduced significantly compared with those of direct Monte Carlo simulations.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第4期163-166,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(10932009 11172233)
关键词 首穿失效概率 重要样本法 平均上穿率 等效线性化 first excursion probability important sampling mean up-crossing rate equivalent linearization
  • 相关文献

参考文献19

  • 1Rice 0 C. Mathematical analysis of random noise [ J . Bell Syst Tech J, 1944 ( 23 ) :282 - 332. 被引量:1
  • 2Rice 0 C. Mathematical analysis of random noise [ J ] Bell Syst Tech J, 1945 (24) :46 - 156. 被引量:1
  • 3Spencer B F, Bergman L A. On the numerical Solution of the Fokker-Planck equation for nonlinear stochastic systems [ J ]. Nonlinear Dynamic, 1993 (4) : 357 - 372. 被引量:1
  • 4Li W, Xu W. Stochastic optimal control of first passage failure for coupled Duffing-Van derPol system under Gaussian white noise excitations [ J ]. Chaos. Solitons& Fractal, 2005, 25(5) : 1221 - 1228. 被引量:1
  • 5Li W, Xu W. First passage problem for strong nonlinear stochastic dynamical system [ J]. Chaos. Solitons & Fractal, 2006,28(2) : 414 -421. 被引量:1
  • 6Proppe C, Pradlwarter H J, Schueller G I. Equivalent linearization and Monte Carlo simulation in Stochastic dynamics [ J ]. Probab Eng Mech, 2003,18 ( 3 ) : 1 - 15. 被引量:1
  • 7Pradlwarter H J, Schueller G I. Assessment of low probability events of dynamical systems by controlled Monte Carlo simulation [ J ]. Probab Eng Mech, 1999,14 ( 3 ) : 213 - 227. 被引量:1
  • 8Zuev K M, Katafygiotis L S. The Horseracing Simulationalgorithm for evaluation of small failure probabilities [ J 1. Probab Eng Mech , 2011, 26 (2) : 157 - 164. 被引量:1
  • 9Katafygiotis L, Cheung S H. Domain decomposrtion method for calculating the failure probability of linear dynamic systems subjected to Gaussian stochastic loads [ J] Journal of Engineering Mechanics,2006,20:475 -486. 被引量:1
  • 10Olsen A I, Naess A. An importance sampling procedure for estimating failure probabilities of Non-linear dynamic systems subjected to random noise [ J]. J Non-linear Mech, 2007 (42) : 848 - 863. 被引量:1

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部