期刊文献+

与强奇异Calderon-Zygmund算子相关的Toeplitz算子的双权估计

Two Weighted Estimates of Toeplitz Operator Related to Strongly Singular Calderon-Zygmund Operators
下载PDF
导出
摘要 研究了与强奇异Calderon-Zygmund算子和加权Lipschitz函数Lip_(β_0,ω)相关的Toeplitz算子T_b的sharp极大函数的点态估计,并证明了Toeplitz算子是从L^p(ω)到L^q(ω^(1-q))上的有界算子.此外,建立了与强奇异Calderon-Zygmund算子和加权BMO函数BMO_ω相关的Toeplitz算子T_b的sharp极大函数的点态估计,并证明了Toeplitz算子是从L^p(μ)到L^q(ν)上的有界算子.上述结果包含了相应交换子的有界性. In this paper, the authors concern the pointwise estimates of the sharp maximal function of the Toeplitz operator Tb related to strongly singular Calderdn-Zygmund operators and the weighted Lipschitz spaces Lipβ0,ω. The authors show that the Toeplitz operator Tb is bounded from LP(ω) to Lq(ω1-q). On the other hand, the aurthors also establish the pointwise estimates of the sharp maximal function of the Toeplitz operator Tb related to the strongly singular Calderdn-Zygmund operators and the weighted BMO spaces BMO(ω), and show that The Toeplitz operator Tb is bounded from Lp(μ) to LP(ν). The above results imply the boundedness of the corresponding commutators.
出处 《数学年刊(A辑)》 CSCD 北大核心 2013年第2期167-178,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10961015 No.10871173 No.11261023) 江西省自然科学基金(No.20122BAB201011) 江西省教育厅基金(No.GJJ10397 No.GJJ12203)的资助
关键词 加权BMO(ω)空间 加权Lipschitz函数空间 强奇异Calderon—Zygmund算子 TOEPLITZ算子 Sharp极大函数 Weighted BMO(ω) space Weighted Lipschitz space Strongly Calderon-Zygmund operator Toeplitz operator Sharp maximal function
  • 相关文献

参考文献7

  • 1Coifman R. A real variable characterization of Hp [J]. Studia Math, 1974, 51:269-274. 被引量:1
  • 2Alvarez J, Millan M. Hp continuity properties of Calder6n-Zygmund type operators [J]. J Math Anal Appl, 1986, 118:63-79. 被引量:1
  • 3Krantz S, Li S. Boundedness of compactness of integrals of homogeneous type and application [J]. J Math Anal Appl, 2001, 258:629 641. 被引量:1
  • 4林燕,陆善镇.与强奇异Calderón-Zygmund算子相关的Toeplitz型算子[J].中国科学(A辑),2006,36(6):615-630. 被引量:10
  • 5Torchinsky A. Real variable methods in harmonic analysis [M]. New York: Academic Press, 1986. 被引量:1
  • 6Garcia-Cuerva J, Rudio de Frandia J L. Weighted norm inequalities and related topics [M]. Amsterdam: North-Holland Math, 1985. 被引量:1
  • 7Bloom S. A commutator theorem and weighted BMO [J]. Trans Amer Math Soc, 1985, 292:103 122. 被引量:1

二级参考文献9

  • 1Fefferman C, Stein E M. H^p spaces of several variables. Acta Math, 1972, 129:137-193 被引量:1
  • 2Coifman R. A real variable characterization of H^p. Studia Math, 1974, 51: 269-274 被引量:1
  • 3Alvarez J, Milman M. H^p continuity properties of Calderon-Zygmund-type operators. J Math Anal Appl,1986, 118:63-79 被引量:1
  • 4Krantz S, Li S. Boundedness and compactness of integral operators on spaces of homogeneous type and applications. J Math Anal Appl, 2001,258:629-641 被引量:1
  • 5Lu S, Zhang P. Lipschitz estimates for generalized commutators of fractional integrals with rough kernel,Math Nachr, 2003, 252:71-85 被引量:1
  • 6Stein E M, Singular integrals and differentiability properties of functions. New Jersey: Princeton Univ Press, 1970 被引量:1
  • 7Chanillo S. A note on commutators. Indiana Univ Math J, 1982, 31(1): 7-16 被引量:1
  • 8Paluszynski M. Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana Univ Math J, 1995, 44(1): 1-17 被引量:1
  • 9邱道文.齐型空间上的一类积分算子[J].数学年刊(A辑),2001,22(6):797-804. 被引量:8

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部