摘要
研究了与强奇异Calderon-Zygmund算子和加权Lipschitz函数Lip_(β_0,ω)相关的Toeplitz算子T_b的sharp极大函数的点态估计,并证明了Toeplitz算子是从L^p(ω)到L^q(ω^(1-q))上的有界算子.此外,建立了与强奇异Calderon-Zygmund算子和加权BMO函数BMO_ω相关的Toeplitz算子T_b的sharp极大函数的点态估计,并证明了Toeplitz算子是从L^p(μ)到L^q(ν)上的有界算子.上述结果包含了相应交换子的有界性.
In this paper, the authors concern the pointwise estimates of the sharp maximal function of the Toeplitz operator Tb related to strongly singular Calderdn-Zygmund operators and the weighted Lipschitz spaces Lipβ0,ω. The authors show that the Toeplitz operator Tb is bounded from LP(ω) to Lq(ω1-q). On the other hand, the aurthors also establish the pointwise estimates of the sharp maximal function of the Toeplitz operator Tb related to the strongly singular Calderdn-Zygmund operators and the weighted BMO spaces BMO(ω), and show that The Toeplitz operator Tb is bounded from Lp(μ) to LP(ν). The above results imply the boundedness of the corresponding commutators.
出处
《数学年刊(A辑)》
CSCD
北大核心
2013年第2期167-178,共12页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10961015
No.10871173
No.11261023)
江西省自然科学基金(No.20122BAB201011)
江西省教育厅基金(No.GJJ10397
No.GJJ12203)的资助