期刊文献+

一种分数阶导数阻尼下随机振动结构的数值模拟方法 被引量:2

A Numerical Simulation Scheme for Random Vibration Structure with Fractional Order Damping
下载PDF
导出
摘要 提出了一种针对分数阶导数阻尼下随机振动结构的数值模拟方法。在对分数阶导数各种经典定义比较的基础上,首先指出了对分数阶导数进行数值计算的难点在于其对历史数据的全局依赖性。然后,对于受分数阶导数阻尼的随机振动结构,利用Riemann-Liouvill定义与Grunwald-Letnikov定义之间的关系,给出了一种对分数阶导数进行数值模拟的方法。通过合理地截断来缩短分数阶导数对历史数据的记忆,从而有效提高计算效率。最后,以分数阶导数阻尼下受高斯白噪声激励的线性随机振动结构为数值算例阐明了所提出方法的有效性。 A numerical simulation scheme for vibration structure with fractional order structural damping is pro- posed. The comparison of different representations of fractional derivatives reveals that the difficulties of the numeri- cal computation lie in the global dependence of historical data. For a class of typical fractionally damped random vi- bration structures, employing the relationship between Riemann-Liouvill and Grunwald-Letnikov definitions, a method of shortening the global memory of the fractional derivative is obtained. The method of choosing the trunca- tion point is given and computational efficiency is improved significantly. The validity and effectiveness of the pro- posed scheme are verified by applying it to a fractionally damped linear structure subjected to Gaussian with noise.
作者 孙春艳 徐伟
出处 《科学技术与工程》 北大核心 2013年第11期3053-3058,共6页 Science Technology and Engineering
基金 国家自然科学基金项目(11172233) (11102155)资助
关键词 分数阶导数 黏弹性结构阻尼 分数阶随机微分方程 MONTE CARLO模拟 fractional order damping viscoelastic structural damping fractional differential equation Monte Carlo simulation
  • 相关文献

参考文献10

  • 1Bagley R L, Torvik P J. Fractional calculus-a different approach to the analysis of viscoelastically damped structures. AIAA Journal, 1983 , 21 (5) : 741-748. 被引量:1
  • 2Bagley R L, Torvik P J. Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA Journal, 1985, 23 (6) : 741 -748. 被引量:1
  • 3Koeller R C. Application of fractional calculus to the theory of vis-coelasticity. ASME Journal of Applied Mechanics, 1984 , 51 ( 2 ) : 299-307. 被引量:1
  • 4Gaul L, Klein P, Kemple S. Impulse response function of an oscilla- tor with fractional derivative in damping description. Mechanics Re- search Communications, 1989 , 16 (5) : 297-305. 被引量:1
  • 5Wahi P, Chatterjee A. Averaging for oscillations with light fractional order damping. Proceedings of ASME 2003 Design Engineering Tech- nical Conferences and Computers and Information in Engineering Con- ferencc, Chicago, 2003 : 721-727. 被引量:1
  • 6Huang Z L, Jin X L Response and stability of a SDOF strongly non- linear stochastic system with light damping modeled by a fractional de- rivative. Journal of Sound and Vibration, 2009, 319 (3-5):1121-1135. 被引量:1
  • 7Podlubny I. Fractional Differential Equations. London: Academic Press 1999. 被引量:1
  • 8Diethelm K, Ford N J, Freed A D et al. Algorithms for the fractional calculus: A selection of numerical methods. Computer Methods in Applied Mechanics and Engineering, 2005, 194(6 -8 ) : 743-773. 被引量:1
  • 9Diethelm K, Ford N J, Freed A D. A Predictor - Corrector Approach for the Numerical Solution of Fractional Differential Equations. Non- linear Dynamics, 2002, 29(1 -4) : 3-22. 被引量:1
  • 10Yuan L, Agrawal 0 P. A numerical scheme for dynamic system con- mining fractional derivatives. Journal of Vibration and Acoustics, 2002, 124(2) : 321-324. 被引量:1

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部