摘要
为了更好的计算两个单变元多项式的最大公因式,20世纪初有Burside和Panton首先提出了结式的概念,在结式的基础上又提出了子结式的概念,这使得求最大公因式有了一个更系统的算法.计算机代数中关于子结式的经典定义过于繁琐,文献[1]中给出了子结式的一种简洁的定义.主要是借助文献[1]新定义的方法给出部分子结式的性质的证明及一些相应的例题,并对部分结论进行了一定的推广.
In order to efficiently compute the two one-variable polynomials' greatest common factor, Burside and Panton first proposed the concept of resultants at the beginning of the twentieth century. The concept of subresultants emerged on later, then the greatest common factor had a more system method to solve. The definition of the subresultants in computer algebra is too cumbersome, paper [1 ] gives a new definition which is easy-to-understand. In this pape, we focus on the proofs of some properties of the subresultants, some examples is given and we also promote some of the properties to a certain degree.
出处
《大学数学》
2013年第6期55-64,共10页
College Mathematics
关键词
子结式
余子式
公因式
subresultants
resultants
greatest common factor