摘要
In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets.
为了研究玄武岩-芳纶和玄武岩-碳混杂纤维增强复合材料(FRP)片材的疲劳破坏形态和疲劳寿命规律,进行了2种混杂比(1∶1和2∶1)的片材试件在0.6~0.95应力水平下的疲劳试验.试验结果表明,对于混杂比为1∶1的试件即B1A1和B1C1,碳纤维或芳纶纤维先发生断裂;对于混杂比为2∶1的试件即B2A1和B2C1,玄武岩纤维先发生断裂.混杂片材的疲劳寿命随碳纤维或芳纶纤维含量的提高而提高,碳纤维含量的提高对其疲劳性能的影响更显著.B2A1的疲劳性能相对较差,B1C1和B2C1的疲劳性能相对较好.最后,提出一种新的双变量双拐点疲劳刚度退化模型,同时适用于多种纤维混杂片材和单种纤维片材.
基金
The National Natural Science Foundation of China(No.51108238)