摘要
设R是有单位元的环,τ是左R-模范畴上的遗传挠理论,M和N是左R-模.一个从M到N的τ-态射是指一个从M的τ-稠密子模到N/Tτ(N)的左R-模同态的等价类,其中Tτ(N)是N的唯一极大的τ-挠子模.所有从M到N的τ-态射的集合homR(M,N)构成一个阿贝尔群.本文讨论了τ-态射与hom函子的一些性质.作为应用,本文用函子hom刻画了τ-单同态,τ-满同态等概念.
Let R be a ring with an identity and let R - mod be the category of all left R - modules. If τ is a hereditary torsion theory on R - rood and M,N are left R - modules, then a τ - morphism from M to N is an equivalence class of the R - homomorphisms from a τ - dense submodule of M to N/T, (N) , where T (N) is the unique maximal τ - torsion submodule of N. The collection of all τ- morphisms from M to N forms an abelian group hornn ( M, N). In this paper, we discuss some properties of τ - morphism and of the functor horn. As an application, we characterize the concepts of τ- monic, τ - epic, etc.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第2期193-197,共5页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(11171240)资助项目
关键词
遗传挠理论
局部化
τ-态射
τ-无挠模
τ-内射模
hereditary torsion theory
localization
τ- morphism
τ- torsionfree module
τ - injecive module