期刊文献+

挠理论局部化技巧 被引量:1

The Localization Technique of Torsion Theory
下载PDF
导出
摘要 设R是有单位元的环,τ是左R-模范畴上的遗传挠理论,M和N是左R-模.一个从M到N的τ-态射是指一个从M的τ-稠密子模到N/Tτ(N)的左R-模同态的等价类,其中Tτ(N)是N的唯一极大的τ-挠子模.所有从M到N的τ-态射的集合homR(M,N)构成一个阿贝尔群.本文讨论了τ-态射与hom函子的一些性质.作为应用,本文用函子hom刻画了τ-单同态,τ-满同态等概念. Let R be a ring with an identity and let R - mod be the category of all left R - modules. If τ is a hereditary torsion theory on R - rood and M,N are left R - modules, then a τ - morphism from M to N is an equivalence class of the R - homomorphisms from a τ - dense submodule of M to N/T, (N) , where T (N) is the unique maximal τ - torsion submodule of N. The collection of all τ- morphisms from M to N forms an abelian group hornn ( M, N). In this paper, we discuss some properties of τ - morphism and of the functor horn. As an application, we characterize the concepts of τ- monic, τ - epic, etc.
作者 乔磊 王芳贵
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期193-197,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11171240)资助项目
关键词 遗传挠理论 局部化 τ-态射 τ-无挠模 τ-内射模 hereditary torsion theory localization τ- morphism τ- torsionfree module τ - injecive module
  • 相关文献

参考文献14

  • 1Bourbaki N. Elements of Mathematics, Commutative Algebra[ M]. Pairs :Arts and Science, 1972. 被引量:1
  • 2Gabriel P. Des cattgories abtliennes [ J ]. Bull Soc Math France, 1962,90:323 - 448. 被引量:1
  • 3Findlay G D, Lambek J. A generalized ring of quotient I , II [J]. Canad Math Bul/,1958,1:77 -85,155 - 167. 被引量:1
  • 4Maranda J M. Injective structures[J]. Trans Am Math Soc,1964,110:98- 135. 被引量:1
  • 5Goldman O. Rings and modules of quotients [ J ]. J Algebra, 1969,13 : 10 - 47. 被引量:1
  • 6Dickson S E. A torsion theory for Abelian categories [ J ]. Trans Am Math Soc, 1966,121:223 -235. 被引量:1
  • 7Lambek J. Torsion theories, additive semantics, and rings of quotients [ C ]//Lecture Notes in.Mathematics. New York : Springer - Verlag, 1971. 被引量:1
  • 8Golan J S. Torsion Theories[ M]. New York:Longman Scientific and Technical, Essex, and John Wiley and Sons, 1986. 被引量:1
  • 9王芳贵著..交换环与星型算子理论[M].北京:科学出版社,2006:512.
  • 10Lambek J. Lectures on Rings and Modules [ M ]. London : Blaisdell, 1966. 被引量:1

二级参考文献24

  • 1余柏林,汪明义.Π-凝聚环的推广[J].四川师范大学学报(自然科学版),2005,28(3):278-281. 被引量:9
  • 2赵国,汪明义.关于极大内射性的注记(英文)[J].四川大学学报(自然科学版),2005,42(5):859-866. 被引量:9
  • 3Vasconcelos W V, Simis A. Projective modules over R[X] ,R a valuation ring are free[J]. Notices Am Math Soc,1971,18:805. 被引量:1
  • 4Swan R G. A simple proof of Gabber' s theorem on projective modules over a localized local ring[J]. Proc AMS,1988,103:1025-1030. 被引量:1
  • 5Hartshorne R. Algebraic Geometry [ M ]. New York, Heidelberg, Berlin: Springer-Verlag, 1977. 被引量:1
  • 6Jones M F, Teply M L. Coherent rings of finite weak global dimension[ J ]. Commun Algebra, 1982,10:493-503. 被引量:1
  • 7Matsumura H. Commutative Algebra[ M ]. 2nd ed. California:The Benjamin/Cummings Publishing Company, Inc, 1980. 被引量:1
  • 8Rotman J J. An Introduction to Homological Algebra[ M]. California :The Benjamin Publishing Company, Inc, 1980. 被引量:1
  • 9Vasconcelos W V. On projective modules of finite rank[ J]. Proc AMS, 1969,22:430-433. 被引量:1
  • 10Wang Fang-gui, Tang Gao-hua. Reflexive modules over coherent GCD-domains[ J]. Commun Algebra,2005,33:3283-3292. 被引量:1

共引文献21

同被引文献13

  • 1GOLAN J S. Torsion theories[C]//Pitman Monographs and Surveys in Pure and Applied Mathematics. New York:John Wiley & Sons Inc,1986. 被引量:1
  • 2BLAND P E. Topics in torsion theory[C]//Mathematical Research. Berlin:Wiley-VCH,1998. 被引量:1
  • 3GABRIEL P. Des catégories abéliennes[J]. Bull Soc Math France,1962,90:323-448. 被引量:1
  • 4DICKSON S E. A torsion theory for Abelian categories[J]. Trans Am Math Soc,1966,121:223-235. 被引量:1
  • 5GROTHENDIECK A. Sur quelques points d'algèbre homologique[J]. T?hoku Math J,1957,9(2):119-221. 被引量:1
  • 6WALKER C L, WALKER E A. Quotient categories and rings of quotients[J]. Rocky Mountain J Math,1972,2(4):513-555. 被引量:1
  • 7WALKER E A. Quotient categories and quasi-isomorphisms of Abelian groups[C]//Proc Colloq Abelian Groups. Budapest:Akadémiai Kiadó,1963. 被引量:1
  • 8BREAZ S, MODOI C. On a quotient category[J]. Studia Univ Babecs-Bolyai Math,2002,47(2):17-29. 被引量:1
  • 9GOLDMAN O. Rings and modules of quotients[J]. J Algebra,1969,13:10-47. 被引量:1
  • 10STENSTR?M B. Rings and modules of quotients[C]//Lecture Notes in Mathematics. Berlin:Springer-Verlag,1971. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部