期刊文献+

关于ZP-内射模 被引量:4

On ZP-Injective Modules
下载PDF
导出
摘要 给出ZP-内射模的概念,举例说明ZP-内射模是P-内射模的一类真推广,讨论该模的等价刻画和基本性质如:RM是ZP-内射模当且仅当对于环R的任意a∈Z(RR),rMlR(a)=aM;ZP-内射左R-模的纯子模是ZP-内射左R-模等.利用ZP-内射模刻画非奇异环即:R是左非奇异环当且仅当任意左R-模是ZP-内射模,当且仅当Z(RR)R,任意单左R-模是ZP-内射模,最后讨论一类特殊的ZP-内射模—ZP-内射环及其自反性. In this paper,the notion of ZP-injective modules is defined. The examples show that the definition of ZP-injective modules is a proper generalization of that of P-injective modules. Then their equivalent definitions and basic properties are discussed. For example,RM is ZP-injective if and only if for any a∈Z(RR) of R,rMlR( a) = aM; any pure submodule of a ZP-injective module is ZP-injective. By using ZP-injective modules,nonsingular rings are characterized. It is shown that the ring R is left nonsingular if and only if any left R-module is ZP-injective if and only if Z(RR)〈 R and any simple left R-module is ZP-injective. Finally,the reflexive properties of ZP-injective rings are discussed.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2015年第5期644-647,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11171240)
关键词 纯子模 ZP-内射模 ZP-内射环 非奇异环 pure submodules ZP-injective modules ZP-injective rings nonsingular rings
  • 相关文献

参考文献16

二级参考文献86

共引文献54

同被引文献35

  • 1徐龙玉,汪明义.关于零化子凝聚环[J].四川师范大学学报(自然科学版),2006,29(2):161-165. 被引量:10
  • 2Ding Nanqing, Li Yuanlin, Mao Lixin. J-coherent rings[J].J Algebra Appl,2009,8(2) ;139-155. 被引量:1
  • 3Mao Lixin, Ding Nanqing. FP-projective dimensions [ J].Comm Algebra,2005,33(4) :1153-1170. 被引量:1
  • 4Ding Nanqing,Chen Jianlong. Coherent rings with finiteself-FP-injective dimension [ J]. Comm Algebra, 1996,24(9):2963-2980. 被引量:1
  • 5Chen Jianlong, Ding Nanqing. On n-coherent rings [ J],Comm Algebra, 1996,24( 10) :3211-3216. 被引量:1
  • 6Gupta R N. On f-injective modules and semihereditaryrings [J]. Proc Nat Inst Sci,1969,35( 1) :323-328. 被引量:1
  • 7Fuelberth J D, Teply M L. Tlie singular submodule of a fi-nitely generated module splits off [ J ]. Pacific J Math,1972,40(l):73-82. 被引量:1
  • 8Lam T Y. Lectures on modules and rings [ M]. New York:Springer-Verlag,1999 : 156-157. 被引量:1
  • 9Boyle A K,Goodearl K R. Rings over which certain mod-ules are injective [ J ] . Pacific J Math,1975,58 ( 1 ) : 43-53. 被引量:1
  • 10Wisbauer R. Foundations of module and ring theory: ahandbook for study and research [ M ]. Amsterdam : Gor-don and Breach Science Publishers, 1991 :82-83. 被引量:1

引证文献4

二级引证文献1

  • 1徐龙玉,胡葵,万吉湘,王芳贵.关于ZP-凝聚环[J].四川师范大学学报(自然科学版),2017,40(1):68-72.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部