期刊文献+

自动交互图像分割中的贝叶斯网络模型构建 被引量:1

Bayesian network model construction in automatic interactive image segmentation
下载PDF
导出
摘要 由于贝叶斯模型和各种图像测量结果,置信传播会更新每个节点的相关概率,提出了在自动交互图像分割过程中应用的新型贝叶斯网络模型。从过度分割模型中的超级像素点区域、边区域、顶点和测量结果之间的统计相关性来构造多层贝叶斯网络模型。除了自动图像分割,贝叶斯网络模型也可用于交互式图像分割中,现有交互分割往往被动地依靠用户提供的准确调整,提出新型主动输入选择方式作为准确调整。实验采用Weizmann数据集和VOC 2006图像集来评估,实验结果表明贝叶斯网络模型可以进行效果更好的自动分割,主动输入选择可以提高整体分割精度。 Bayesian models and a variety of image measurements,belief propagation updates the probability of each node,this paper proposed a new Bayesian network model automatic interactive image segmentation process.From the super pixel area over-segmentation model multilayer Bayesian network model to construct a statistical correlation between the edge of the area,vertex,and measuring results.In addition to automatic image segmentation,the Bayesian network model could also be used for interactive image segmentation that existing interactive segmentation often passively rely on the user to provide accurate adjustment.The new active input selection as a means to accurately adjust this experiment Weizmann datasets and VOC 2006 image sets to assess experimental results show that this Bayesian network model can better automatic segmentation active input selection can improve the overall split accuracy.
出处 《计算机应用研究》 CSCD 北大核心 2013年第4期1240-1243,共4页 Application Research of Computers
基金 湖北省教育厅优秀中青年资助项目(Q20111311)
关键词 超级像素点 贝叶斯网络模型 交互分割 图像分割 super pixel Bayesian network model interactive segmentation image segmentation
  • 相关文献

参考文献25

  • 1COMANICIU D, MEER P. Mean Shire: a robust approach toward feature space analysis[ J]. IEEE Trans on Pattern Analysis Ma- chine Intelligence ,2002,24 ( 5 ) :603-619. 被引量:1
  • 2VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Trans on Pat- tern Analysis Machine Intelligence, 1991,13 ( 6 ) :583- 598. 被引量:1
  • 3CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours [ J]. International Journal of Computation Vision, 1997,22( 1 ) :61-79. 被引量:1
  • 4SHI J, MALIK J. Normalized cuts and image segmentation [ J ]. IEEE Zrans on Pattern Analysis Machine Intelligence,2000,22 (8) :888-905. 被引量:1
  • 5BOYKOV Y, JOLLY M P. Interactive graph cuts for optimal boun- dary and region segmentation of objects in N-D images [ C ]//Proe of International Conference on Computation Vision. 2001:105-112. 被引量:1
  • 6FREEDMAN D, ZHANG T. Interactive graph cut based segmentation with shape priors [ C ]//Proe of IEEE Conference on Computation Vi- sion Pattern Recogalition. 2005:755-762. 被引量:1
  • 7ROTHER C, BLAKE A, KOLMOGOROV V. Grabcut: interactive foreground extraction using iterated graph cuts [ C ]//Proe of SIG- GRAPH. 2004 : 309 - 314. 被引量:1
  • 8LI Yin, SUN Jian, TANG C K, et al. Lazy snapping[ J]. ACM Trans on Graphics,2004,23(3) :303-308. 被引量:1
  • 9MORTENSEN E N, BARRETT W A. Intelligent scissors for image composition [ C ]//Proc of SIGGRAPH. 1995 : 191 - 198. 被引量:1
  • 10FREUND Y, SEUNG H, SHAMIR E, et al. Selective sampling using the query by committee algorithm [ J ]. Machine Learning, 1997,28 (2-3) :133-168. 被引量:1

二级参考文献22

共引文献16

同被引文献13

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部