期刊文献+

样本驱动的半自动图像集前背景分割 被引量:6

Example-Driven Semi-automatic Image Collection Segmentation
下载PDF
导出
摘要 图像集的前背景分割是近年来图像处理与图形学领域的一项热点研究工作.针对图像集中的图像逐个进行交互分割会涉及大量的用户操作,导致效率低下,而联合分割方法通常局限于处理具有相似前景的图像集,且因需求解大规模的优化问题较为耗时的问题,提出一种样本驱动的半自动图像集分割方法.首先选取若干图像作为样本进行手动交互分割,训练基于样本图像超像素特征描述的支持向量机分类器;对于其余待分割图像,根据其超像素特征描述到支持向量机分隔超平面的距离计算基于双弯曲Sigmoid函数映射的前景置信度,再采用图切割的算法实现目标图像的快速自动分割.对于包含错误分割的个别图像,进一步提出一种交互式局部修正方法修复错误分割区域,并获得最终的精确分割结果.在2个标准数据集上进行算法有效性验证和对比实验的结果表明,与联合分割算法相比,文中方法能更好、更快地实现在线分割;与逐个交互分割算法相比,文中方法能以相对较小的交互量实现对目标图像集的精确分割. Binary segmentation for image collection has received considerable attention in image processing and graphic communities recently. Interactively separating foregrounds from an image set one by one is time-consuming and requires tedious user guidance. Meanwhile, image co segmentation techniques generally lack efficiency due to the complexity of solving large optimization problems and are only applicable to images sharing similar foreground appearance. In this paper, we propose an example-driven semi-automatic framework to tackle the image collection segmentation problem. First, we select few sample images from the given image collection and deliver them to user for hand segmentation. Then, super-pixel features based support vector machine (SVM) classifier is trained. For each super-pixel of a given image, we estimate its foreground labeling confidence by applying Sigmoid function on the distance between its descriptor and SVM separation hyperplane. The confidence values are then encoded in a graph cut segmentation procedure to achieve automatic object cutout. For each image with incorrectly segmented regions, accurate result is further obtained by a new proposed local refinement process. Experiments on 2 standard datasets are presented, showingthat the proposed algorithm not only greatly outperforms existing co-segmentation techniques, but also largely reduces users' efforts for cutting out object interactively.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第6期794-801,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61073098 61021062) 国家"九七三"重点基础研究发展计划项目(2010CB327903) 江苏省自然科学基金(BK2009081)
关键词 图像分割 联合分割 超像素 支持向量机 双弯曲Sigmoid函数 image segmentation co-segmentation super-pixel support vector machine Sigmoid function
  • 相关文献

参考文献27

  • 1Mortensen EN. Barrett W A. Intelligent scissors for image composition[CJ II Computer Graphics Proceedings. Annual Conference Series. ACM SIGGRAPH. New York: ACM Press. 1995: 191-198. 被引量:1
  • 2Chuang Y Y. Curless B. Salesin 0 H. et al. A Bayesian approach to digital matting[CJ IIProceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press. 2001.2: 264-271. 被引量:1
  • 3Boykov Y.Jolly M. Interactive graph cuts for optimal boundary and region segmentation of objects in N -0 images[CJ IIProceedings of the 8th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press. 2001. 1: 105-112. 被引量:1
  • 4Rother C. Kolmogorov V. Blake A. "GrabCut": interactive foreground extraction using iterated graph cuts[CJ II Computer Graphics Proceedings. Annual Conference Series. ACM SIGGRAPH. New York: ACM Press. 2004: 309-314. 被引量:1
  • 5Li Y. SunJ. Tang C K. et al . Lazy snapping[CJ IIComputer Graphics Proceedings. Annual Conference Series. ACM SIGGRAPH. New York: ACM Press. 2004: 303-308. 被引量:1
  • 6郑加明,陈昭炯.带连通性约束的快速交互式Graph-Cut算法[J].计算机辅助设计与图形学学报,2011,23(3):399-405. 被引量:8
  • 7Grady L. Random walks for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2006.28(11): 1768-1783. 被引量:1
  • 8Adobe Photoshop 7. 0 user guide[M]. SanJose: Adobe Systems Incorporated. 2002. 被引量:1
  • 9Rother C. Minka T. Blake A. et al. Cosegmentation of image pairs by histogram matching-incorporating a global constraint into MRFs[CJ IIProceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press. 2006. 1: 993-1000. 被引量:1
  • 10Mukherjee L. Singh V. Dyer C R. Half-integrality based algorithms for cosegmentation of images[CJ II Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press. 2009: 2028-2035. 被引量:1

二级参考文献18

  • 1Boykov Y R,Funka-Lea G.Graph cuts and efficient N-D image segmentation[J].International Journal of Computer Vision,2006,70(2):109-131. 被引量:1
  • 2Rother C,Kolmogorov V,Blake A.Grabcut-interactive foreground extraction using iterated graph cuts[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH.New York:ACM Press,2004:309-314. 被引量:1
  • 3Li Y,Sun J,Tang C K,et al.Lazy snapping[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH.New York:ACM Press,2004:303-308. 被引量:1
  • 4Mortensen E N,Reese L J,Barrett W A.Intelligent selection tools[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2000,2:776-777. 被引量:1
  • 5Mortensen E N,Barrett W A.Interactive segmentation with intelligent scissors[J].Graphical Models in Image Processing,1998,60(5):349-384. 被引量:1
  • 6Vicente S,Kolmogorov V,Rother C.Graph cut based image segmentation with connectivity priors[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2008:1-8. 被引量:1
  • 7Freedman D,Zhang T.Interactive graph cut based segmentation with shape priors[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2005,1:755-762. 被引量:1
  • 8Veksler O.Star shape prior for Graph-Cut image segmentation[M]//Lecture Notes in Computer Science.Heidelberg:Springer,2008,5304:454-467. 被引量:1
  • 9Kass M,Witkin A,Terzolpoulos D.Snakes:active contour models[J].International Journal of Computer Vision,1988,1(4):321-331. 被引量:1
  • 10Boykov Y Y,Jolly M P.Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[C]//Proceedings of the 8th IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2001,1:105-112. 被引量:1

共引文献7

同被引文献50

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2ROTHER C, MINKA T, BLAKE A, et al. Coseg- mentation of image pairs by histogram matching-incor- porating a global constraint into MRFs[C] ff Proceed- ings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscat- away, NJ, USA: IEEE, 2006:993-1000. 被引量:1
  • 3HOCHBAUM D S, SINGH V. An efficient algorithm for co-segmentation [C]// Proceedings of 2009 IEEE 12th International Conference on Computer Vision. Piseataway, NJ, USA: IEEE, 2009: 269-276. 被引量:1
  • 4CHANG K Y, LIU T L, LAI S H. From co-saliency to co-segmentation: an efficient and fully unsupervised energy minimization model [C] // Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Rec- ognition. Piscataway, NJ, USA: IEEE, 2011: 2129- 2136. 被引量:1
  • 5VICENTE S, ROTHER C, KOLMOGOROV V. Ob- ject cosegmentation [C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recogni tion. Piscataway, NJ, USA: IEEE, 2011: 2217- 2224. 被引量:1
  • 6JOULIN A, BACH F, PONCE J. Discriminative clus- tering for image co-segmentation [C]// Proceedings of 2010 IEEE Conference on Computer Vision and Pat- tern Recognition. Piscataway, NJ, USA: IEEE, 2010: 1943-1950. 被引量:1
  • 7HUANG Hua, ZHANG Lei, ZHANG Hongchao. RepSnapping: efficient image cutout for repeated scene elements [J]. Computer Graphics Forum, 2011, 30 (7) : 2059-2066. 被引量:1
  • 8BERGE C. Graph and hypergraph [M]. Amsterdam, Holland: North-Holland Publishing Company, 1973. 被引量:1
  • 9COMANICIU D, MEER P. Mean shift: a robust ap- proach toward feature space analysis [J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence,2002, 24(5): 603-619. 被引量:1
  • 10SHI J, MALIK J. Normalized cuts and image segmen- tation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. 被引量:1

引证文献6

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部