期刊文献+

面向大规模数据的隐私保护学习机 被引量:2

Privacy Preserving Learning Machine for Large Scale Datasets
下载PDF
导出
摘要 随着海量数据不断涌入,SVM隐私泄露问题日益严重。在分析已有隐私保护支持向量机基础上,提出一种面向大规模数据的隐私保护学习机(PPLM)。该方法首先通过核心向量机对大规模样本进行采样,然后在核心集上选取两个样本点并将两点连线的法平面作为最优分类面。通过对标准数据集和人工数据集的实验表明,PPLM可有效地解决大规模样本分类问题,且分类效果良好。 Support vector machine (SVM) is widely used in pattern classification. In order to solve the privacy preserving problem in SVM, a privacy preserving learning machine for large scale datasets (PPLM) is proposed in this paper. First, core vector machine (CVM) is introduced for sampling the large scale datasets; then two points from different classes are ehosen in the core set and the hyperplane orthogonal to the line connecting these two points is treated as the optimal separating hyperplane. Experimental results obtained from synthetic and standard datasets verify that the PPLM is effective and competitive.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2013年第2期272-276,共5页 Journal of University of Electronic Science and Technology of China
基金 国家863项目(2007AA1Z158 2006AA10Z313) 国家自然科学基金(60773206 60704047)
关键词 大规模数据集 模式分类 隐私保护 支持向量机 large scale datasets pattern classification privacy preserving support vector machine
  • 相关文献

参考文献16

  • 1VAPNIK V. The nature of statistical learning theory[M]. New York: Springer Verlag, 1995. 被引量:1
  • 2邓乃扬,田英杰著..支持向量机:理论、算法与拓展[M].北京:科学出版社,2009:244.
  • 3PAL M, FOODY G M. Feature selection for classification of hyper spectral data by SVM[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5): 2297-2307. 被引量:1
  • 4YU H, JIANG Xiao-qian, VAIDYA J. Privacy-preserving SVM using nonlinear kernels on horizontally partitioned data[C]//Proceedings of the 2006 ACM Symposium on Applied Computing. New York, USA : ACM, 2006: 603-610. 被引量:1
  • 5MANGASARIAN O L, WILD E W. Privacy-preserving classification of horizontally partitioned data via random kernels[C]//Procecdings of the 2008 International Conference on Data Mining, Las Vegas: [s.n.], 2008. 被引量:1
  • 6YU H, VAIDYA J, JIANG Xiao-qian. Privacy-preserving SVM classification on vertically partitioned data[C]// Proceedings of PAKDD'06. Berlin Heideberg: Springer Verlag, 2006: 647-656. 被引量:1
  • 7MANGASARIAN O L, WILD E W, FUNG G M. Privacy- preserving classification of vertically partitioned data via random kernels[J]. ACM Transactions on Knowledge Discovery fi'om Data, 2008, 3(2):1-16. 被引量:1
  • 8LEE Y J, MANGASARIAN O L. Reduced support vector machines[C]//Proceedings of the First SIAM International Conference on Data Mining. Chicago, Philadelphia, UAS: ACM, 2001: 57-64. 被引量:1
  • 9LIN Kuan-ming, LIN C J. A study on reduced support vector machines[J]. IEEE Transactions on Neural Network, 2003, 45(2): 199-204. 被引量:1
  • 10MARCIN O. New separating hyperplane method with application to the optimization of direct marketing campaigns[J]. Pattern Recognition Letters, 2011 (32): 540- 545. 被引量:1

二级参考文献29

共引文献459

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部