期刊文献+

具有隐私保护功能的协作式分类机制 被引量:4

Collaborative Classification Mechanism for Privacy-Preserving
下载PDF
导出
摘要 提出了一种能够保护数据隐私的协作式分类机制,即C2MP2(collaborative classification mechanismfor privacy-preserving),该算法利用2类样本各自的均值和协方差作为整体信息,将整体信息共享给对方,参与分类的双方,分别使用各自的隐私数据和对方的整体信息训练获得2个可以保护隐私的分类器,并由2个分类器协作得到最终的分类器.其线性模型的训练过程不仅可以保护双方数据元的隐私,还可以保护数据元的数量信息不泄露.针对测试过程的隐私保护,设计了可以保护待测样本的隐私和分类规则不泄露的安全算法.在C2MP2线性模型的基础上,分析了C2MP2和MPM(mini maxprobability machine),SVM(support vector machine)以及M4(maxi-min margin machine)在处理隐私数据方面的区别和联系.进一步使用核方法通过内积矩阵实现隐私保护的同时提高C2MP2的非线性识别能力,并通过模拟数据和标准数据集上实验检验了C2MP2线性模型和核化模型的有效性. Privacy-preserving is becoming an increasingly important task in the Web-enabled world.Specifically we propose a novel two-party privacy-preserving classification solution called collaborative classification mechanism for Privacy-preserving(C2MP2)that is inspired from mean value and covariance matrix globally stating data location and direction,and the fact that sharing those global information with others will not disclose ones own privacy.This model collaboratively trains the decision boundary from two hyper-planes individually constructed by ones own privacy information and counter-party's global information.As a major contribution,we show that C2MP2 can protect both data-entries and number of entries.We describe the C2MP2 model definition,provide the geometrical interpretation,and present theoretical justifications.To guarantee the security of testing procedure,we then develop a testing algorithm based on homomorphic encryption scheme.Moreover,we show that C2MP2 can be transformed into existing minimax probability machine(MPM),support vector machine(SVM)and maxi-min margin machine(M4)model when privacy data satisfies certain conditions.We also extend C2MP2 to a nonlinear classifier by exploiting kernel trick without privacy disclosure.Furthermore,we perform a series of evaluations on both toy data sets and real-world benchmark data sets.Comparison with MPM and SVM demonstrates the advantages of our new model in protecting privacy.
出处 《计算机研究与发展》 EI CSCD 北大核心 2011年第6期1018-1028,共11页 Journal of Computer Research and Development
基金 国家自然科学基金重大研究计划基金项目(90820002) 中央高校基本科研业务费专项基金项目(JUDCF09034)
关键词 分类 隐私保护 协作学习 安全双方计算 支持向量机 classification privacy-preserving collaborative learning secure two-party computation SVM
  • 相关文献

参考文献25

  • 1刘业政,凡菊,姜元春.网络用户隐私关心问题研究[J].商业研究,2009(2):22-27. 被引量:5
  • 2Vaidya Jaideep, Yu Hwanjo, Jiang Xiaoqian. Privacy-preserving SVM classification [J]. Knowledge and Information Systems, 2008, 14(2): 161-178. 被引量:1
  • 3Yu Hwanjo, Vaidya Jaideep, Jiang Xiaoqian. Privacy-preserving SVM classification on vertically partitioned data [C] //Advances in Knowledge Discovery and Data Mining. Berlin: Springer, 2006:647-656. 被引量:1
  • 4Verykios V S, Bertino E, Fovino I N, et al. State-of-the-art in privacy preserving data mining [C]//SIGMOD Record. New York: ACM, 2004: 50-57. 被引量:1
  • 5A. grawal D, Aggarwal C C. On the design and quantification of privacy preserving data mining algorithms [C] //Proc of the 20th ACM SIGMOD-SIGACT-SIGART Symp on Principles of Database Systems. New York: ACM, 2001: 247-255. 被引量:1
  • 6黄伟伟,柏文阳.统计数据库中保持隐私的数据扰动方法的研究[J].计算机研究与发展,2006,43(z3):289-294. 被引量:3
  • 7Goethals B, Laur S, Lipmaa H, et al. On private scalar product computation for privacy preserving data mining [C]//Proc of the 7th Int Conf on Information Security and Cryptology(ICISC 2004). Berlin: Springer, 2004:104-120. 被引量:1
  • 8罗文俊,李祥.多方安全矩阵乘积协议及应用[J].计算机学报,2005,28(7):1230-1235. 被引量:34
  • 9Aggarwal C C, Yu P S. A condensation approach to privacy preserving data mining [C]//Advances in Database Technology(EDBT 2904). Berlin: Springer, 2004:183-199. 被引量:1
  • 10Yu Hwanjo, Jiang Xiaoqian, Vaidya Jaideep. Privacy preserving SVM using nonlinear kernels on horizontally partitioned data [C] //Proc of the 2006 ACM Syrup on Applied computing. New York: ACM, 2006:603-610. 被引量:1

二级参考文献42

  • 1张梦.中美两国文化中的隐私观念比较[J].河南师范大学学报(哲学社会科学版),2006,33(5):37-39. 被引量:6
  • 2Vise, D. ,. Fears over Big Brother stalked Gmail. The Sunday Times news paper. Available online at : [ EB/ OL] http ://business. timesonline, co. uk/article/, accessed on 8 December 2005. 被引量:1
  • 3Carina Painea, UlfDietrich Reipsb, Stefan Stiegerc, Adam Joinsona, Tom Buchanan. Internet users" perceptions of privacy concerns'and privacy actions" [J]. human - computer studies2007.65 (526 - 536). 被引量:1
  • 4Chang Liu, Jack T. Marchewka, June Lu, Chun - Sheng Yu. Beyond concem - a privacy - trust - behavioral intention model of electronic commerce [ J]. Information & Management 42 (2005) 289 -304. 被引量:1
  • 5Huberman B, Adar E, Fine L. Valuating Privacy [ J ]. IEEE SECURITY&PRIVACY, 2005 : 22 - 25. 被引量:1
  • 6Thabtah F, Cowling P, Hammoud S. Improving nile sorting, predictive accuracy and training time in associative classification [ J ]. Expert Systems with Applications, 2006(31 ) : 414 -426. 被引量:1
  • 7Liu B, Hsu W, Ma Y. Integrating classification and association rule mining [ C ]. Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98), 1995. 被引量:1
  • 8Antonie M, Za? ane O, Coman, A. Associative classifiers for medical images [ M ]. Lecture notes in artificial intelligence 2797, mining multimedia and complex data. New York: Springer, 2003, 68 - 83. 被引量:1
  • 9Yin X, Han J. CPAR: Classification based on predictive association rules [ C ]. Proceedings of 2003 SIAM International Conference on Data Mining (SDM' 03), 2003,369-376. 被引量:1
  • 10Forrester Research( 1999 ). Post - web retail ( September) [ R/OL]. http://www. forrester. com/ 被引量:1

共引文献39

同被引文献51

  • 1刘向东,陈兆乾.一种快速支持向量机分类算法的研究[J].计算机研究与发展,2004,41(8):1327-1332. 被引量:13
  • 2邓乃杨,田英杰.数据挖掘的新方法-支持向量机[M].北京:科学出版社,2004. 被引量:4
  • 3Stolpe M,Morik K.Learning from Label Proportions by Optimizing Cluster Model Sel ection[A].ECML PKDD 2011[C].Berlin,Heidelberg,2011,Part III,Vol.6913,349-3 64. 被引量:1
  • 4Rüping S.SVM classifier estimation from group probabilities[A].Proceedings of 27th ICML[C].Haifa,2010:911-918. 被引量:1
  • 5Quadrianto N,Smola A J,Caetano T S,et al.Estimating labels from label proportion s[A].Proceedings of 25th ICML[C].Omnipress,2008.776-783. 被引量:1
  • 6Quadrianto N,Smola A J,Caetano T S,et al.Estimating labels from label proportion s[J].Journal of Machine Learning Research,2009,(10):2349-2374. 被引量:1
  • 7Tao J W,Chung F L,Wang S T,On Minimum distribution discrepancy support vector ma chine for domain adaptation[J].Pattern Recognition,2012,45(11):3962-3984. 被引量:1
  • 8Gao J,Fan W,Jiang J,Han J W.Knowledge transfer via multiple model local structur e mapping[A].Proceedings of the 14th ACM SIGKDD International Conference on Kn owledge Discovery and Data Mining[C].New York,USA:ACM,2008.283-291. 被引量:1
  • 9Quanz B,Huan J.Large margin transductive transfer learning[A].Proceedings of t he 18th ACM conference on Information and knowledge management[C].New York,USA :ACM,2009.1327-1336. 被引量:1
  • 10Platt J C.Probabilistic outputs for support vector machines and comparisons to r egularized likelihood methods[A].Advances in Large Margin Classifiers[C].Cam bridge:MIT Press,1999.61-74. 被引量:1

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部